Quantum integral equations of Volterra type in terms of discrete-time normal martingale

Quantum integral equations of Volterra type in terms of discrete-time normal martingale

In this paper, we aim to introduce a quantum linear stochastic Volterra integral equation of convolution typewith operator-valued kernels in a nuclear topological algebra. We first establish the existence and uniqueness of thesolutions and give the explicit expression of the solutions. Then we prove the continuity, continuous dependence on freeterms and other properties of the solution.

___

  • [1] Bellman R, Cooke KL. Differential-Difference Equations. New York, NY, USA: Academic, 1963.
  • [2] Bellman R, Kalaba R, Lockett J. Numerical Inversion of the Laplace Transform. New York, NY, USA: American Elsevier, 1966.
  • [3] Chen JS. Convergence theorems for operators sequences on functionals of discrete-time normal martingales. Journal of Function Spaces 2018; Article ID 8430975. doi: 10.1155/2018/8430975
  • [4] Cochran WG, Lee JS, Potthoff J. Stochastic Volterra equation with singular kernels. Stochastic Processes and Their Applications 1995; 56: 337-349. doi: 10.1016/0304-4149(94)00072-2
  • [5] Émery M. A discrete approach to the chaotic representation property. In: Séminaire de Probabilités, XXXV. Lecture Notes in Mathematics; Berlin, Germany: Springer 2001, pp. 123-138.
  • [6] Friedman A. On integral equations of Volterra type. Journal d’Analyse Mathématique 1963; 11 (1): 381-413. doi: 10.1007/BF02789991
  • [7] Friedman A, Shinbrot M. Volterra integral equations in Banach space. Transactions of the American Mathematical Societyt 1967; 126: 131-179. doi: 10.1090/S0002-9947-1967-0206754-7
  • [8] Gel’fand IM, Vilenkin NY. Generalized Functions, vol. 4. Applications of Harmonic Analysis. New York, NY, USA: Academic Press, 1964.
  • [9] Hida T. Analysis of Brownian Functionals. CarletonMath, Lectures 13. Ottawa, Carleton University, 1975.
  • [10] Hida T, Kuo HH, Potthoff J, Streit L. White Noise: An Infinite Dimensional Calculus. Dordrecht, The Netherlands: Kluwer Academic, 1993.
  • [11] Huang ZY, Yan JA. Introduction to Infinite Dimensional Stochastic Analysis. Dordrecht, The Netherlands: Kluwer Academic, 1999.
  • [12] Motwani R, Raghavan P. Randomized Algorithms. New York, NY, USA: Cambridge University Press, 1995.
  • [13] ksendal B, Zhang TS. The general linear stochastic Volterra equations with anticipating cofficients. In: Proceedings Gregynog Conference on Stochastic Analysis, 1996.
  • [14] Obata N. An analytic characterization of symbols of operators on white noise functionals. Journal of the Mathematical Society of Japan 1993; 45: 421-445. doi: 10.2969/jmsj/04530421
  • [15] Privault N. Stochastic analysis of Bernoulli processes. Probability Surveys 2008; 5: 435-483. doi: 10.1214/08-PS139
  • [16] Rudnick J, Gaspari G. Elements of the Random Walk. Cambridge, UK: Cambridge University Press, 2004.
  • [17] Tricomi FG. Integral Equations. New York, NY, USA: Interscience, 1957.
  • [18] Wang CS, Chen JS. Characterization theorems for generalized functionals of discrete-time normal martingale. Journal of Function Spaces 2015; Article ID 714745. doi: 10.1155/2015/714745
  • [19] Wang CS, Lu YC, Chai H F. An alternative approach to Privault’s discrete-time chaotic calculus. Journal of Mathematical Analysis and Applications 2011; 373: 643-654. doi: 10.1016/j.jmaa.2010.08.021
  • [20] Wang CS, Zhang JH. Wick analysis for Bernoulli noise functionals. Journal of Function Spaces Volume 2014; Article ID 727341. doi: 10.1155/2014/727341
  • [21] Wang CS, Chen JS. A Characterization of Operators on Functionals of Discrete-Time Normal Martingales. Stochastic Analysis and Applications 2017; 35 (2): 305-316. doi: 10.1080/07362994.2016.1248779