Companion sequences associated to the r -Fibonacci sequence: algebraic and combinatorial properties

Companion sequences associated to the r -Fibonacci sequence: algebraic and combinatorial properties

It is well known that the companion sequence of the Fibonacci sequence is Lucas’s sequence. For thegeneralized Fibonacci sequences, the companion sequence is not unique. Several authors proposed different definitions,and they are in a certain sense all good. Our purpose is to introduce a family of companion sequences for some generalizedFibonacci sequence: the r -Fibonacci sequence. We evaluate the generating functions and give some applications, andwe exhibit convolution relations that generalize some known identities such as Cassini’s. Afterwards, we calculate thesums of their terms using matrix methods. Next, we propose a q -analogue and extend the definition to negative ns.Also, we define the incomplete associated sequences using a Euler–Seidel-like approach.

___

  • [1] Ahmia M, Belbachir H, Belkhir A. The log-concavity and log-convexity properties associated to hyperPell and hyperPell-Lucas sequences. Annales Mathematicae et Informaticae 2014; 43: 3-12.
  • [2] Bashi MM, Mezo I, Solak S. A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers. Annales Mathematicae et Informaticae 2014; 43: 19-27.
  • [3] Belbachir H, Belkhir A. On some generalizations of Horadam’s numbers. Filomat 2018; 32 (14): 5037-5052. doi: 10.2298/FIL1814037B
  • [4] Belbachir H, Bencherif F. Linear recurrent sequences and powers of a square matrix. Integers 2006; 6: A12.
  • [5] Belbachir H, Bencherif F. On some properties of bivariate Fibonacci and Lucas polynomials. Journal of Integer Sequences 2008; 11: 08.2.6.
  • [6] Belbachir H, Bencherif F. Sums of product of generalized Fibonacci and Lucas numbers. Ars Combinatoria 2013; 110: 33-43.
  • [7] Belbachir H, Benmezai A. An alternative approach to Cigler’s q-Lucas polynomials. Applied Mathematics and Computation 2014; 226: 691-698. doi.org/10.1016/j.amc.2013.10.009
  • [8] Benjamin A, Quinn JJ, Su FED. Phased tilings and generalized Fibonacci identities. Fibonacci Quarterly 2000; 38: 282-288.
  • [9] Carlitz L. Fibonacci notes, 4: q -Fibonacci polynomials. Fibonacci Quarterly 1975; 13: 97-102.
  • [10] Cerlienco L, Mignotte M, Piras F. Suites récurrentes linéaires, propriétés algébriques et arithmétiques. Enseignements Mathématiques 1987; 33: 67-108 (in French).
  • [11] Cigler J. A new class of q-Fibonacci polynomials. Electronic Journal of Combinatorics 2003; 10: 19.
  • [12] Cigler J. Some beautiful q-analogues of Fibonacci and Lucas polynomials. ArXiv 2011; 1104.2699.
  • [13] Dickinson D. On sums involving binomial coefficients. American Mathematical Monthly 1950; 57: 82-86.
  • [14] Djordjevic GB, Srivastava HM. Incomplete generalized Jaccobsthal and Jacobsthal-Lucas numbers. Mathematical and Computer Modelling 2005; 42: 1049-1056. doi: 10.1016/j.mcm.2004.10.026
  • [15] Filpponi P. Incomplete Fibonacci and Lucas numbers. Rendiconti del Circolo Matematico di Palermo 1996; 45 (1): 37-56. doi: 10.1007/BF02845088
  • [16] Graham RL, Knuth DE, Patashnik O. Concrete Mathematics - A Foundation for Computer Science. Advanced Book Program (1st ed.). Reading, MA, USA: Addison-Wesley Publishing Company, 1989.
  • [17] Kilic E. The generalized order-k Fibonacci-Pell sequence by matrix methods. Journal of Computational and Applied Mathematics 2007; 209: 133-145. doi: 10.1016/j.cam.2006.10.071
  • [18] Kilic E. The Binet formula, sums and representations of generalized Fibonacci p-numbers. European Journal of Combinatorics 2008; 29: 701-711. doi: 10.1016/j.ejc.2007.03.004
  • [19] Kilic E. Evaluation of Hessenberg determinants via generating function approach. Filomat 2017; 31 (15): 4945-4962. doi: 12298/FIL1715945K
  • [20] Koshy T. Fibonacci and Lucas Numbers with Application. New York, NY, USA: Wiley, 2001.
  • [21] Miles EP. Generalized Fibonacci numbers and associated matrices. American Mathematical Monthly 1960; 67 (10): 745-752. doi: 10.2307/2308649
  • [22] Pinter A, Srivastava M. Generating functions of the incomplete Fibonacci and Lucas numbers. Rendiconti del Circolo mathematico di Palmero 1999; 48 (3): 591-596. doi: 10.1007/BF02844348
  • [23] Raab JA. A generalization of the connection between the Fibonacci sequence and Pascal’s triangle. Fibonacci Quarterly 1963; 1 (3): 21-31.
  • [24] Srivastava HM, Manocha HL. A Treatise on Generating Functions. Chichester, UK: John Wiley and Sons, 1984.
  • [25] Tasci D, Firengiz MC, Tuglu N. Incomplete bivariate Fibonacci and Lucas p-polynomials. Discrete Dynamics in Nature and Society 2012; 2012: 840345. doi: 10.1155/2012/840345