Perfect numerical semigroups

Perfect numerical semigroups

A numerical semigroup is perfect if it does not have isolated gaps. In this paper we will order the perfectnumerical semigroups with a fixed multiplicity. This ordering allows us to give an algorithm procedure to obtain them.We also study the perfect monoid, which is a subset of N that can be expressed as an intersection of perfect numericalsemigroups, and we present the perfect monoid generated by a subset of N. We give an algorithm to calculate it. Westudy the perfect closure of a numerical semigroup, as well as the perfect numerical semigroup with maximal embeddingdimension, in particular Arf and saturated numerical semigroups.

___

  • [1] Arf C. Une interpretation algebraique de la suite des ordres de multiplicite d’une branche algebrique. Proceedings of the London Mathematical Society Series 1949; 2: 256-287 (in French).
  • [2] Barucci V, Dobbs DE, Fontana M. Maximality properties in numerical semigroups and applications to onedimensional analytically irreducible local domains. Memoirs of the American Mathematical Society 1997; 598: 95.
  • [3] Campillo A. On saturations of curve singularities (any characteristic). Proceedings of Symposia in Pure Mathematics 1983; 40: 211-220.
  • [4] García-Sánchez PA, Heredia BA, Karakas HI, Rosales JC. Parametrizing Arf numerical semigroups. Journal of Algebra and Its Applications 2017; 16: 1750209.
  • [5] Lipman J. Stable ideals and Arf rings. American Journal of Mathematics 1971; 93: 649-685.
  • [6] Pham F, Teissier B. Fractions lipschitziennes et saturations de Zariski des alg￿bres anlytiques complexes. In: Ce travail est la base de l’exposé de Frédéric Pham au Congrès International des Mathématiciens, Nice, France, 1970 (in French).
  • [7] Rosales JC. Principal ideals of numerical semigroups. Bulletin of the Belgian Mathematical Society 2003; 10: 1-15.
  • [8] Rosales JC, Branco MB, Torrão D. On the enumeration of the set of saturated numerical semigroups with fixed Frobenius number. Applied Mathematics and Computation 2014; 236: 471-479.
  • [9] Rosales JC, Branco MB, Torrão D. On the enumeration of the set of saturated numerical semigroups of a given genus. Semigroup Forum 2014; 88: 621-630.
  • [10] Rosales JC, García-Sánchez PA. Numerical Semigroups. Developments in Mathematics, Vol. 20. New York, NY, USA: Springer, 2009.
  • [11] Rosales JC, García-Sánchez PA, García-García JI, Branco M. Saturated numerical semigroups. Houston Journal of Mathematics 2004; 30: 321-330.
  • [12] Zariski O. General theory of saturation and of saturated local rings I, II, III. American Journal of Mathematics 1971; 93: 573–684.