Classifying semisymmetric cubic graphs of order 20p
Classifying semisymmetric cubic graphs of order 20p
A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-transitive. In thispaper we classify all connected cubic semisymmetric graphs of order 20p, p prime.
___
- [1] Alaeiyan M, Ghasemi M. Cubic edge-transitive graphs of order 8p2 . Bulletin of the Australian Mathematical Society
2008; 77 (2): 315-323.
- [2] Alaeiyan M, Onagh BN. On semisymmetric cubic graphs of order 10p3 . Hacettepe Journal of Mathematics and
Statistics 2011; 40 (4): 531-535.
- [3] Bugeand Y, Cao Z, Mignotte M. On simple K4 -groups. Journal of Algebra 2001; 241(2):658–668.
- [4] Butler G, McKay J. The transitive groups of degree up to eleven. Communications in Algebra 1983; 11 (8): 863-911.
- [5] Conder M, Malnič A, Marušič D, Potočnik P. A census of semisymmetric cubic graphs on up to 768 vertices. Journal
of Algebraic Combinatorics 2006; 23 (3): 255-294.
- [6] Conder M, Nedela R. A refined classification of symmetric cubic graphs. Journal of Algebra 2009; 322: 722-740.
- [7] Du S, Xu M. A classification of semisymmetric graphs of order 2pq . Communications in Algebra 2000; 28 (6):
2685-2715.
- [8] Feng Y, Ghasemi M, Changqun W. Cubic semisymmetric graphs of order 6p3 . Discrete Mathematics 2010; 310
(17): 2345-2355.
- [9] Folkman J. Regular line-symmetric graphs. Journal of Combinatorial Theory 1967; 3 (3): 215-232.
- [10] Goldschmidt DM. Automorphisms of trivalent graphs. Annals of Mathematics 1980; 111 (2): 377-406.
- [11] Han H, Lu Z. Semisymmetric graphs of order 6p2 and prime valency. Science China Mathematics 2012; 55 (12):
2579-2592.
- [12] Herzog M. On finite simple groups of order divisible by three primes only. Journal of Algebra 1968; 120 (10):
383-388.
- [13] Hua X, Feng Y. Cubic semisymmetric graphs of order 8p3 . Science China Mathematics 2011; 54 (9): 1937-1949.
- [14] Kwak JH, Nedela R. Graphs and Their Coverings. Lecture Notes Series Vol. 17.
Bratislava, Slovakia: Slovak
Academy of Sciences, 2007.
- [15] Lu Z, Wang C, Xu M. On semisymmetric cubic graphs of order 6p2 . Science in
China, Series A: Mathematics 2004;
47 (1): 1-17.
- [16] Malnič A, Marušič D, Wang C. Cubic Semisymmetric Graphs of Order 2p3 . Ljubljana, Slovenia: University of
Ljubljana Preprint Series, 2000.
- [17] Malnič A, Marušič D, Wang C. Cubic edge-transitive graphs of order 2p3 . Discrete Mathematics 2004; 274 (1-3):
187-198.
- [18] Robinson DJ. A Course in the Theory of Groups. New York, NY, USA: Springer-Verlag, 1982.
- [19] Shi WJ. On simple K4 -groups. Chinese Science Bulletin 1991; 36 (17): 1281-1283.
- [20] Suzuki M. Group Theory. New York, USA: Springer-Verlag, 1986.
- [21] Talebi A, Mehdipoor N. Classifying cubic semisymmetric graphs of order 18pn . Graphs and Combinatorics 2014;
30 (4): 1037-1044.
- [22] The GAP Group. Groups, Algorithms and Programming. Version 4.8.6, 2016; http://www.gap-system.org.
- [23] Tutte WT. Connectivity in Graphs. Toronto, Canada: University of Toronto Press, 1966.
- [24] Zhang S, Shi WJ. Revisiting the number of simple K4 -groups. arXiv: 1307.8079v1 [math.NT], 2013.