Posner's Second theorem and an annihilator condition with generalized derivations

Posner's Second theorem and an annihilator condition with generalized derivations

Let R be a prime ring of characteristic different from 2, with extended centroid C, U its two-sided Utumi quotient ring, $deltaneq 0$ a non-zero generalized derivation of R, f $(x_1 , .., x_n )$ a non-central multilinear polynomial over C in n non-commuting variables, $a epsilon R$ such that $a[delta(f (r_1 , .., r_n )]$, $f (r_1 , .., r_n )] = 0$, for any $r_1 , .., r_n epsilon R$. Then one of the following holds: 1. a = 0; 2. there exists $lambda epsilon C$ such that $delta(x) = lambda x$, for all $x epsilon R$; 3. there exist $q epsilon U$ and $lambda epsilon C$ such that $delta(x) = (q + lambda)x + xq$, for all $x epsilon R$, and $f (x_1, .., x_n )^2$ is central valued on R.

___

  • [1] Beidar, K.I., Martindale, III W.S. and Mikhalev, A.V.: Rings with generalized identities, Pure and Applied Math., Dekker, New York, 1996.
  • [2] Chuang, C.L.: GPIs having coefficients in Utumi quotient rings, Proc. Amer. Mat. Soc. vol.103 No.3, 723-728, 1988.
  • [3] Chuang, C.L.: The additive subgroup generated by a polynomial, Israel J. Math. 59(1), 98-106, 1987.
  • [4] De Filippis, V.: Engel conditions with generalized derivations on multilinear polynomials, Israel J. Math., to appear.
  • [5] De Filippis, V.: Prime rings with annihilator conditions on power values of derivations on multilinear polynomials, Taiwanese Journal Math., vol.5 (4), 725-730, 2001.
  • [6] De Filippis, V. and Di Vincenzo O.M.: Posner’s second theorem and an annihilator condition, Math. Pannonica vol.12/1, 2001, 69-81.
  • [7] Di Vincenzo, O.M.: On the n-th centralizer of a Lie ideal, Boll. UMI (7) 3-A, 77-85, 1989.
  • [8] Herstein, I.N.: Topics in ring theory, Univ. of Chicago Press, Chicago 1969.
  • [9] Kharchenko, V.K.: Differential identities of prime rings, Algebra and Logic 17, 155-168, 1978.
  • [10] Lanski C.: An Engel condition with derivation, Proc. Amer. Math. Soc., vol.118 No.3, 731-734, 1993.
  • [11] Lanski, C. and Montgomery, S.: Lie structure of prime rings of characteristic 2, Pacific Journal of Math., vol. 42, n.1, 117-135, 1972.
  • [12] Lee, P.H. and Lee, T.K.: Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc. 124, No.9, 2625-2629, 1996.
  • [13] Lee, T.K.: Derivations with Engel conditions on polynomials, Algebra Colloq. 5:1, 13-24, 1998.
  • [14] Lee, T.K.: Generalized derivations of left faithful rings, Comm. Algebra, 27(8), 4057-4073, 1999.
  • [15] Lee, T.K.: Semiprime ring with differential identities, Bull. Inst. Math. Acad. Sinica, vol.20 No.1, 27-38, 1992.
  • [16] Leron, U.: Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202, 97-103, 1975.
  • [17] Martindale, III W.S.: Prime rings satisfying a generalized polynomial identity, J. Algebra 12, 576-584, 1969.
  • [18] Posner, E.C.: Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
  • [19] Rowen, L.: Polynomial identities in Ring Theory, Pure and Applied Math. vol. 84, Academic Press, New York 1980.