Metric Trees, Hyperconvex Hulls and Extensions

In this paper we examine the relationship between hyperconvex hulls and metric trees. After providing a linking construction for hyperconvex spaces, we show that the four-point property is inherited by the hyperconvex hull, which leads to the theorem that every complete metric tree is hyperconvex. We also consider some extension theorems for these spaces.

Metric Trees, Hyperconvex Hulls and Extensions

In this paper we examine the relationship between hyperconvex hulls and metric trees. After providing a linking construction for hyperconvex spaces, we show that the four-point property is inherited by the hyperconvex hull, which leads to the theorem that every complete metric tree is hyperconvex. We also consider some extension theorems for these spaces.

___

  • Aronszajn, A. and Panitchpakdi P.: Extension of uniformly continous transformations and hyperconvex metric spaces, PaciŞc J. Math. 6, 405–439 (1956).
  • Bartolini, I., Ciaccia. P., Patella. M.: String Matching with Metric Trees Using Approximate Distance, SPIR, Lecture Notesin Computer Science, Springer-Verlag, Vol. 2476, 271-283
  • Bestvina, M.: R-trees in Topology, Geometry, and Group Theory, Handbook of geometric topology, pp. 55-91, North-Holland, Amsterdam, 2002.
  • Bridson, M. and Haefliger, A.: Metric Spaces of Nonpositive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999.
  • Bugajewski, D. and Grzelaczyk, E.: A Şxed point theorem in hyperconvex spaces, Arch. Math. 75, 395–400 (2000).
  • Buneman, P.: A note on the metric properties of trees, J. Combin. Theory Ser. B, 17, 48–50 (1974).
  • Day, M. M.: “Normed Linear Spaces”, Third edition, Springer-Verlag, Berlin, Heidelberg, New York. 1973.
  • Deineko, V., Klinz, B. and Woeginger G. J.: Four point conditions and exponential neigh- borhoods for symmetric tsp, Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithm, ACM Press, 544-553 (2006).
  • Dres s , A. W. M.: Trees, tight extensions of metric spaces, and the chomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53, –402 (1984).
  • Dress, A. W. M., Moulton, V. and Terhalle, W.: T-Theory, an overview, European J. Combin. 17, 161–175 (1996).
  • Isbell, J. R.: Six theorems about injective metric spaces, Comment. Math. Helv. 39, 439–447 (1964).
  • Johnson W. B., Lindenstrauss, J. and Preiss, D.: Lipschitz quotients from metric trees and from Banach spaces containing l11, J. Funct. Anal. 194, 332–346 (2002).
  • Khamsi, M. A. and Kirk, W. A.: “An Introduction to Metric Spaces and Fixed Point Theory”, Pure and Applied Math., Wiley, New York 2001.
  • Kirk, W. A.: Hyperconvexity of R-Trees, Fund. Math. 156, 67–72 (1998).
  • Matouˇsek, J.: Extension of Lipschitz mappings on metric trees, Comment. Math. Univ. Carolinae 31, 99–104 (1990).
  • Nachbin, L.: A theorem of Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68, 28–46 (1950).
  • Semple, C., Steel M.: Phylogenetics, Oxford Lecture Seriesin Mathematicsand itsAppli- cations, 24 2003.
  • Tits, J.: A theorem of Lie-Kolchin for trees, Contributionsto Algebra: a collection of papers dedicated to Ellis Kolchin, Academic Press, New York, 1977.
  • Zippin, M.: Extension of bounded linear operators, Handbook of the geometry of Banach spaces, Vol.2, 1703–1741 (2003). A. G. AKSOY
  • Department of Mathematics Claremont McKenna College Claremont, CA 91711 USA e-mail: aaksoy@cmc.edu B. MAURIZI
  • Department of Mathematics Washington University in St. Louis St. Louis, MO 63130 USA e-mail: bmaurizi@math.wustl.edu