Polynomial root separation in terms of the Remak height

We investigate some monic integer irreducible polynomials which have two close roots. If P(x) is a separable polynomial in Z[x] of degree d \geq 2 with the Remak height R(P) and the minimal distance between the quotient of two distinct roots and unity Sep(P), then the inequality 1/Sep(P) \ll R(P)d-1 is true with the implied constant depending on d only. Using a recent construction of Bugeaud and Dujella we show that for each d \geq 3 there exists an irreducible monic polynomial P \in Z[x] of degree d for which R(P)(2d-3)(d-1)/(3d-5) \ll 1/Sep(P). For d=3 the exponent 3/2 is improved to 5/3 and it is shown that the exponent 2 is optimal in the class of cubic (not necessarily monic) irreducible polynomials in Z[x].

Polynomial root separation in terms of the Remak height

We investigate some monic integer irreducible polynomials which have two close roots. If P(x) is a separable polynomial in Z[x] of degree d \geq 2 with the Remak height R(P) and the minimal distance between the quotient of two distinct roots and unity Sep(P), then the inequality 1/Sep(P) \ll R(P)d-1 is true with the implied constant depending on d only. Using a recent construction of Bugeaud and Dujella we show that for each d \geq 3 there exists an irreducible monic polynomial P \in Z[x] of degree d for which R(P)(2d-3)(d-1)/(3d-5) \ll 1/Sep(P). For d=3 the exponent 3/2 is improved to 5/3 and it is shown that the exponent 2 is optimal in the class of cubic (not necessarily monic) irreducible polynomials in Z[x].

___

  • Beresnevich, V., Bernik, V., and G¨ otze, F.: The distribution of close conjugate algebraic numbers. Compos. Math. 146, 1165–1179, (2010).
  • Bugeaud, Y., and Dujella, A.: Root separation for irreducible integer polynomials. Bull. London Math. Soc. 43, 1239–1244, (2011).
  • Bugeaud, Y., and Mignotte, M.: On the distance between roots of integer polynomials. Proc. Edinburgh Math. Soc. 47, 553–556, (2004).
  • Bugeaud, Y., and Mignotte, M.: Polynomial root separation. Intern. J. Number Theory 6, 587–602, (2010).
  • Collins, G.E.: Polynomial root separation. J. Symbolic Comput. 32, 467–473, (2001).
  • Danilov, L.V.: The Diophantine equation x 3 − y 2 = k and Hall’s conjecture. Mathematical Notes 32, 617–618, (1982).
  • Dubickas, A.: An estimation of the difference between two zeros of a polynomial. In: New Trends in Probability and Statistics. Vol. 2: Analytic and Probabilistic Methods in Number Theory (Eds.: F. Schweiger and E. Manstaviˇ cius), 17–27, TEV, Vilnius, VSP, Utrecht (1992).
  • Dubickas, A.: On a conjecture of A. Schinzel and H. Zassenhaus. Acta Arith. 63, 15–20, (1993).
  • Dubickas, A.: The Remak height for units. Acta Math. Hungar. 97, 1–13, (2002).
  • Dubickas, A., and Smyth, C.J.: On the Remak height, the Mahler measure and conjugate sets of algebraic numbers lying on two circles. Proc. Edinburgh Math. Soc. 44, 1–13, (2001), 1–17.
  • Dujella, A., and Pejkovi´ c, T.: Root separation for reducible monic quartics. Rend. Semin. Mat. Univ. Padova 126, 63–72, (2011).
  • Evertse, J.-H.: Distances between the conjugates of an algebraic number. Publ. Math. Debrecen 65, 323–340, (2004). G¨ uting, R.: Polynomials with multiple zeros. Mathematika 14, 181–196, (1967).
  • Hall, M., Jr.: The Diophantine equation x 3 − y 2 = k . In: Computers in Number Theory (Eds.: A.O.L. Atkin and B.J. Birch), 173–198, Proc. Oxford (1969), Academic Press (1971).
  • Langevin, M.: Syst` emes complets de conjugu´ es sur un corps quadratique imaginaire et ensembles de largeur constante. In: Number Theory and Applications, NATO Adv. Sci. Inst. Ser. C 265, 445-457, Kluwer (1989).
  • Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Math. J. 11, 257–262, (1964).
  • Marden, M.: The geometry of the zeros of a polynomial in a complex variable. Mathematical Surveys, New York: American Mathematical Society, VIII, 1949.
  • Mignotte, M.: Some useful bounds. In: Computer Algebra, Symbolic and Algebraic Computation, 2nd ed. (Eds.: B. Buchberger, G. E. Collins and R. Loos), 259–263, Springer-Verlag (1982).
  • Mignotte, M.: On the distance between the roots of a polynomial. Appl. Algebra Engng. Comm. Comput. 6, 327–332, (1995).
  • Mignotte, M., and Payafar, M.: Distance entre les racines d’un polynˆ ome. RAIRO Anal. Num´ er. 13, 181–192, (1979).
  • Remak, R.: ¨ Uber Gr¨ ossenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlk¨ orpers. Compositio Math. 10, 245–285, (1952).
  • Sch¨ onhage, A.: Polynomial root separation examples. J. Symbolic Comput. 41, 1080–1090, (2006).
  • Uherka, D.J., and Sergot, A.M.: On the continuous dependence of the roots of a polynomial on its coefficients. Amer. Math. Monthly 84, 368–370, (1977).
  • Za¨ımi, T.: Minoration d’un produit pond´ er´ e des conjugu´ es d’un entier alg´ ebrique totalement r´ eel. C. R. Acad. Sci. Paris, S´ er. I Math. 318, 1–4, (1994).