Continuous invariant averagings
Main results: For every equicontinuous almost periodic linear representation of a group in a complete locally convex space L with the countability property, there exists the unique invariant averaging; it is continuous and is expressed by using the L-valued invariant mean of Bochner and von-Neumann. An analog of Wiener's approximation theorem for an equicontinuous almost periodic linear representation in a locally convex space with the countability property is proved.
Continuous invariant averagings
Main results: For every equicontinuous almost periodic linear representation of a group in a complete locally convex space L with the countability property, there exists the unique invariant averaging; it is continuous and is expressed by using the L-valued invariant mean of Bochner and von-Neumann. An analog of Wiener's approximation theorem for an equicontinuous almost periodic linear representation in a locally convex space with the countability property is proved.
___
- Bochner, S., von Neumann, J.: Almost periodic functions in a group, II. Trans. Amer. Math. Soc. 37, 21-50 (1935). Bourbaki, N.: Espaces Vectoriels Topologiques. Paris. Hermann, 1953-1955.
- Bustos Domecq, H.: Vector-valued invariant means revisited. J. Math. Anal. Appl. 275, 512-520 (2002).
- Chivukula, R. R., Sarma, I. R.: Means with values in a Banach lattice. Intern. J. Mat. Math. Sci. 10-2, 295-302 (1987).
- Chou C., Lau, A. T,-M.: Vector-valued invariant means on spaces of bounded operators associated to a locally compact group. Illinois J. Math. 45-2, 581-602 (2001).
- Dixmier, J.: Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Math (Szeged) 12, 213-227 (1950).
- Douglas, S.: On a concept of summability in amenable semigroups. Math. Scand. 23, 96-102 (1968).
- G˝ unzler, H.: On the countability of the spectrum of weakly almost periodic functions. Proc. Internat. Conf. on Partial Differential Equations, dedicated to Luigi Amerio on his 70th birthday (Milan/Como, 1982). (Rend. Sem. Mat. Fis. Milano vol. 52) Univ. Studi Milano, Milan 109-147 (1985).
- Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis, Vol. 1. New York. Springer-Verlag, 1963.
- Husain, T., Wong, J. C. S.: Invariant means on vector valued functions I. Ann. Scuola Norm. Sup. Pisa 27, 717-729 (1973).
- Husain, T., Wong, J. C. S.: Invariant means on vector valued functions II. Ann. Scuola Norm. Sup. Pisa 27, 729-742 (1973).
- Kadets, M. I., K˝ ursten, K.D.: Countability of the spectrum of weakly almost periodic functions with values in a Banach space. Theor. Funktsii Funktsional Anal. i Prilozhen. (Khar’kov Gos. Univ.) 33, 45-49 (1980); English transl., Selecta Math. Soviet. 8:3, 197-201 (1989).
- Kelley, J. L.: General Topology. New York. Springer-Verlag, 1955.
- Khadjiev, D., C ¸ avu¸s, A.: Invariant averagings of locally compact groups. J.Math. Kyoto Univ. 46-4, 701-711 (2006). Khadjiev, D.: The widest continuous integral. J. Math. Anal. Appl. 326, 1101-1115 (2007).
- Leeuw, K. de, Glicksberg, I.: Applications of almost periodic compactifications. Acta Math. 105, 63-97 (1961).
- Levitan, B. M., Zhikov, V. V.: Almost Periodic Functions and Differential Equations. New York. Cambridge Univ. Press, 1982.
- Lyubich, Y. I.: Introduction to The Theory of Representations of Groups. Berlin. Birkh ¨ a user Verlag, 1988.
- Milnes, P.: On vector-valued weakly almost periodic functions. J. London Math. Soc., 22-3, 467-472 (1980).
- Miyake, H., Takahashi, W.: Mean ergodic theorems for almost periodic semigroups. Taiwanese J. Math. 14-3B, 1079-1091 (2010).
- Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Berlin-New York. Springer-Verlag, 1994.
- Shtern, A. I.: Almost periodic functions and representations in locally convex spaces. Russian Math. Surveys 60:3, 489-557 (2005). von Neumann, J.: On complete topological spaces. Trans. Amer. Math. Soc. 37, 1-20 (1935).
- Wiener, N.: The Fourier Integral and Certain of Its Applications. New York. Dover Publ., 1958.
- Zhang, C.-Y.: Vector valued means and weakly almost periodic functions. Int. J. Math. Math. Sci. 17-2, 227-237 (1994).