On the Pollard decomposition method applied to some Jacobi–Sobolev expansions

On the Pollard decomposition method applied to some Jacobi–Sobolev expansions

Let ${q_n^{(alpha,beta)}}_{ngeq0}$ be the sequence of polynomials orthonormal with respect to the Sobolev inner product$langle f,g rangle s := int_{-1}^1 f(x)g(x)w^{(alpha,beta)}(x)dx + int_{-1}^1 f'(x)g'(x)w^{(alpha+1,beta+1)}(x)dx $,where $w^{(alpha,beta)} (x) = (1-x)^{alpha} (1+x)^{beta}, x in [-1,1]$ and $alpha, beta > −1$ . This paper explores the convergence in the $W^{1-p} biggl((-1,1),(w^{(alpha,beta)}, w^{(alpha +1,beta +1)})biggr)$ norm of the Fourier expansion in terms of ${q_n^{(alpha,beta)}}_{ngeq0}$with 1 < p < ∞ , using the Pollard decomposition method. Numerical examples concerning the comparison between the approximation of functions in $L^2$ norm and $W^{1,2}$ norm are also presented.

___

  • [1] Askey, R.: Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM. Bristol, UK. J. W. Arrowsmith Ltd. 1975.
  • [2] Badkov, V.M.: The uniform convergence of Fourier series in orthogonal polynomials. Math. Notes 5, 174–179 (1969).
  • [3] Ciaurri, O., Roncal, L.: The Bochner-Riesz means for Fourier-Bessel expansions. J. Funct. Anal. 228, 89–113 (2005).
  • [4] De Jesus, M.N., Petronilho, J.: Sobolev orthogonal polynomials and (M, N ) -coherent pairs of measures. J. Comput. Appl. Math. 237, 83–101, (2012).
  • [5] Fejzullahu, B. X.: Divergent Legendre-Sobolev polynomial series. Novi. Sad J. Math. 38, 35–41 (2008).
  • [6] Fejzullahu, B. X.: Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product. J. Approx. Theory 162, 397–406 (2010).
  • [7] Fejzullahu, B. X., Marcellan, F.: A Cohen type inequality for Laguerre-Sobolev expansions. J. Math. Anal. Appl. 352, 880–889 (2009).
  • [8] Iserles, A., Koch, P.E., Nørsett, S.P., Sanz-Serna, J.M.: Orthogonality and approximation in a Sobolev space. In: Algorithms for Approximations (Eds.: J.C. Mason and M.G. Cox) 117–124, London. Chapman & Hall (1990).
  • [9] Johansson, M.: The Hilbert transform. Master Thesis. Vaxjo University. Sweden, 1999.
  • [10] Marcellan, F., Osilenker, B.P.: Estimates of polynomials orthogonal with respect to the Legendre-Sobolev inner product. Math. Zamet. 62, 871–880 (1997).
  • [11] Marcellan, F., Osilenker, B.P., Rocha, I.A.: Problemas abiertos en series de Fourier de Jacobi-Sobolev. In: Margarita Mathematica en memoria de Jos ́ Javier (Chicho) Guadalupe Hern ́ndez. (Eds.: L. Espanol and J.L. Varona) 183– 189, Logrono, Spain. Servicio de Publicaciones, Universidad de La Rioja (2001) (in Spanish).
  • [12] Marcellan, F., Osilenker, B.P., Rocha, I.A.: On Fourier series of Jacobi-Sobolev orthogonal polynomials. J. of Inequal. & Appl. 7, 673–699 (2002).
  • [13] Marcellan, F., Rocha, I.A., Salto, L.: Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product. J. Approx. Theory 121, 336–356 (2003).
  • [14] Marcellan, F., Quintana, Y.: Polinomios ortogonales no-estandar. Propiedades algebraicas y analiticas. XXII Escuela Venezolana de Matematicas. Ediciones IVIC, Merida, Venezuela (2009) (in Spanish).
  • [15] Marcellan, F., Quintana, Y., Urieles, A.: On W 1,p -convergence of Fourier-Sobolev expansions. J. Math. Anal. Appl. 398, 594–599 (2013).
  • [16] Mastroianni, G., Notarangelo, I.: Lp -convergence of Fourier sums with exponential weights on (−1, 1) . J. Approx. Theory 163, 623–639 (2011).
  • [17] Mastroianni, G., Notarangelo, I.: Fourier sums with exponential weights on (−1, 1) : L1 and L∞ cases. J. Approx. Theory 163, 1675–1691 (2011).
  • [18] Mate, A., Nevai, P., Totik, V.: Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials. J. Approx. Theory 46, 314–322 (1986).
  • [19] Meaney, C.: Divergent Jacobi polynomials series. Proc. Amer. Math. Soc. 87, 459–462 (1983).
  • [20] Mikhlin, S.G., Prössdorf, S.: Singular integral operators. Berlin. Springer-Verlag 1986.
  • [21] Muckenhoupth, B.: Mean convergence of Jacobi series. Proc. Amer. Math. Soc. 23, 306–310 (1969).
  • [22] Nevai, P.: Mean convergence of Lagrange interpolation. III. Trans. Amer. Math. Soc. 282, 669–698 (1984).
  • [23] Newman, J., Rudin, W.: Mean convergence of orthogonal series. Proc. Amer. Math. Soc. 3, 219–222 (1952).
  • [24] Pena, A., Rezola, M.L.: Discrete Laguerre-Sobolev expansions: A Cohen type inequality. J. Math. Anal. Appl. 385, 254–263 (2012).
  • [25] Pollard, H.: The mean convergence of orthogonal series of polynomials. Proc. Nat. Acad. Sci. USA 32, 8–10 (1946).
  • [26] Pollard, H.: The mean convergence of orthogonal series I. Trans. Amer. Math. Soc. 62, 387–403 (1947).
  • [27] Pollard, H.: The mean convergence of orthogonal series II. Trans. Amer. Math. Soc. 63, 355–367 (1948).
  • [28] Pollard, H.: The mean convergence of orthogonal series III. Duke Math. J. 16, 189–191 (1949).
  • [29] Pollard, H.: The convergence almost everywhere of Legendre series. Proc. Amer. Math. Soc. 35, 442–444 (1972).
  • [30] Rudin, W.: Real and Complex Analysis. 2nd. ed. New York. McGraw Hill 1974.
  • [31] Stempak, K.: On convergence and divergence of Fourier-Bessel series. Electron. Trans. Numer. Anal. 14, 223–235 (2002).
  • [32] Szegö, G.: Orthogonal Polynomials. 4th ed. Providence. American Mathematical Society 1975.
  • [33] Varona, J.L.: Convergencia en Lp con pesos de la serie de Fourier respecto de algunos sistemas ortogonales. Doctoral Dissertation. Universidad de Cantabria, Spain. 1988 (in Spanish).
  • [34] Varona, J.L.: Condiciones necesarias para la convergencia de series de Fourier. Mathematiques 3, 135–153 (2005) (in Spanish).
  • [35] Wing, G.M.: The mean convergence of orthogonal series. Amer. J. Math. 72, 792–808 (1950).