On the Pollard decomposition method applied to some Jacobi--Sobolev expansions

Let {qn(a,b)}n \geq 0 be the sequence of polynomials orthonormal with respect to the Sobolev inner product \langle f,g\rangleS:=\int-11f(x)g(x)w(a,b)(x)dx+\int-11f'(x)g'(x)w(a+1,b+1)(x)dx, where w(a,b)(x)=(1-x)a(1+x)b, x\in [-1,1] and a,b>-1. This paper explores the convergence in the W1,p\left((-1,1), (w(a,b),w(a+1,b+1))\right) norm of the Fourier expansion in terms of {qn(a,b)}n\geq 0 with 1< p

On the Pollard decomposition method applied to some Jacobi--Sobolev expansions

Let {qn(a,b)}n \geq 0 be the sequence of polynomials orthonormal with respect to the Sobolev inner product \langle f,g\rangleS:=\int-11f(x)g(x)w(a,b)(x)dx+\int-11f'(x)g'(x)w(a+1,b+1)(x)dx, where w(a,b)(x)=(1-x)a(1+x)b, x\in [-1,1] and a,b>-1. This paper explores the convergence in the W1,p\left((-1,1), (w(a,b),w(a+1,b+1))\right) norm of the Fourier expansion in terms of {qn(a,b)}n\geq 0 with 1< p

___

  • Askey, R.: Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM. Bristol, UK. J. W. Arrowsmith Ltd. 1975.
  • Badkov, V.M.: The uniform convergence of Fourier series in orthogonal polynomials. Math. Notes 5, 174–179 (1969). Ciaurri, ´ O., Roncal, L.: The Bochner-Riesz means for Fourier-Bessel expansions. J. Funct. Anal. 228, 89–113 (2005). De Jes´ us, M.N., Petronilho, J.: Sobolev orthogonal polynomials and (M, N ) -coherent pairs of measures. J. Comput. Appl. Math. 237, 83–101, (2012).
  • Fejzullahu, B. X.: Divergent Legendre-Sobolev polynomial series. Novi. Sad J. Math. 38, 35–41 (2008).
  • Fejzullahu, B. X.: Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product. J. Approx. Theory 162, 397–406 (2010).
  • Fejzullahu, B. X., Marcell´ an, F.: A Cohen type inequality for Laguerre-Sobolev expansions. J. Math. Anal. Appl. 352, 880–889 (2009).
  • Iserles, A., Koch, P.E., Nİrsett, S.P., Sanz-Serna, J.M.: Orthogonality and approximation in a Sobolev space. In: Algorithms for Approximations (Eds.: J.C. Mason and M.G. Cox) 117–124, London. Chapman & Hall (1990).
  • Johansson, M.: The Hilbert transform. Master Thesis. Vaxjo University. Sweden, 1999.
  • Marcell´ an, F., Osilenker, B.P.: Estimates of polynomials orthogonal with respect to the Legendre-Sobolev inner product. Math. Zamet. 62, 871–880 (1997).
  • Marcell´ an, F., Osilenker, B.P., Rocha, I.A.: Problemas abiertos en series de Fourier de Jacobi-Sobolev. In: Margarita Mathematica en memoria de Jos´ e Javier (Chicho) Guadalupe Hern´ andez. (Eds.: L. Espa˜ nol and J.L. Varona) 183– 189, Logro˜ no, Spain. Servicio de Publicaciones, Universidad de La Rioja (2001) (in Spanish).
  • Marcell´ an, F., Osilenker, B.P., Rocha, I.A.: On Fourier series of Jacobi-Sobolev orthogonal polynomials. J. of Inequal. & Appl. 7, 673–699 (2002).
  • Marcell´ an, F., Rocha, I.A., Salto, L.: Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product. J. Approx. Theory 121, 336–356 (2003).
  • Marcell´ an, F., Quintana, Y.: Polinomios ortogonales no-est´ andar. Propiedades algebraicas y anal´ıticas. XXII Escuela Venezolana de Matem´ aticas. Ediciones IVIC, M´ erida, Venezuela (2009) (in Spanish).
  • Marcell´ an, F., Quintana, Y., Urieles, A.: On W 1,p -convergence of Fourier-Sobolev expansions. J. Math. Anal. Appl. 398, 594–599 (2013).
  • Mastroianni, G., Notarangelo, I.: L p -convergence of Fourier sums with exponential weights on ( −1, 1). J. Approx. Theory 163, 623–639 (2011).
  • Mastroianni, G., Notarangelo, I.: Fourier sums with exponential weights on ( −1, 1): L 1 and L ∞ cases. J. Approx. Theory 163, 1675–1691 (2011).
  • M´ at´ e, A., Nevai, P., Totik, V.: Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials. J. Approx. Theory 46, 314–322 (1986).
  • Meaney, C.: Divergent Jacobi polynomials series. Proc. Amer. Math. Soc. 87, 459–462 (1983).
  • Mikhlin, S.G., Pr¨ ossdorf, S.: Singular integral operators. Berlin. Springer-Verlag 1986.
  • Muckenhoupth, B.: Mean convergence of Jacobi series. Proc. Amer. Math. Soc. 23, 306–310 (1969).
  • Nevai, P.: Mean convergence of Lagrange interpolation. III. Trans. Amer. Math. Soc. 282, 669–698 (1984).
  • Newman, J., Rudin, W.: Mean convergence of orthogonal series. Proc. Amer. Math. Soc. 3, 219–222 (1952).
  • Pe˜ na, A., Rezola, M.L.: Discrete Laguerre-Sobolev expansions: A Cohen type inequality. J. Math. Anal. Appl. 385, 254–263 (2012).
  • Pollard, H.: The mean convergence of orthogonal series of polynomials. Proc. Nat. Acad. Sci. USA 32, 8–10 (1946). Pollard, H.: The mean convergence of orthogonal series I. Trans. Amer. Math. Soc. 62, 387–403 (1947).
  • Pollard, H.: The mean convergence of orthogonal series II. Trans. Amer. Math. Soc. 63, 355–367 (1948).
  • Pollard, H.: The mean convergence of orthogonal series III. Duke Math. J. 16, 189–191 (1949).
  • Pollard, H.: The convergence almost everywhere of Legendre series. Proc. Amer. Math. Soc. 35, 442–444 (1972).
  • Rudin, W.: Real and Complex Analysis. 2nd. ed. New York. McGraw Hill 1974.
  • Stempak, K.: On convergence and divergence of Fourier-Bessel series. Electron. Trans. Numer. Anal. 14, 223–235 (2002).
  • Szeg˝ o, G.: Orthogonal Polynomials. 4th ed. Providence. American Mathematical Society 1975.
  • Varona, J.L.: Convergencia en L p con pesos de la serie de Fourier respecto de algunos sistemas ortogonales. Doctoral Dissertation. Universidad de Cantabria, Spain. 1988 (in Spanish).
  • Varona, J.L.: Condiciones necesarias para la convergencia de series de Fourier. Mathem` atiques 3, 135–153 (2005) (in Spanish).
  • Wing, G.M.: The mean convergence of orthogonal series. Amer. J. Math. 72, 792–808 (1950).