Maximal oscillatory singular integrals with kernels in L log L $(S^{n-1})$
Maximal oscillatory singular integrals with kernels in L log L $(S^{n-1})$
In this paper, we study the $L^p$ mapping properties of a certain class of maximal oscillatory singular integral operators. We establish the $L^p$ boundedness of our operators provided that their kernels belong to the natural space L log +L $(S^{n-1})$. Our result substantially improves a previously known result. Moreover, the approach developed in this paper can be applied to handle more general maximal oscillatory singular integral operators.
___
- [1] Al-Salman, A.: Rough oscillatory singular integral operators of non-convolution type, J. Math. Anal. Appl. 299 (2004) 72-88. [2] Al-Salman, A., Pan, Y.: Singular integrals with rough kernels in $Llog^{+} L(S^{n-1})$, J. London. Math. Soc. (2) 66 (2002) 153-174. [3] Al-Salman, A., Al-Jarrah, A.: Rough Oscillatory Singular Integral Operators-II, Turkish. J. Math. 27 (4) (2003), 565-579. [4] Calderon, A. P., Zygmund, A.: On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. [5] Calderon, A. P., Zygmund, A.: On singular integrals, Amer. J. Math. 78 (1956), 289-309. [6] Chen, L.: On a singular integral, Studia Math. 85 (1987), 61-72. [7] Duoandikoetxea, J., Rubio de Francia, J. L.: Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. [8] Fan, D., Pan, Y.: Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math., 119 (1997), 799-839. [9] Fan, D., Guo, K., and Pan, Y.: Singular integrals along submanifolds of finite type, Mich. Math. J. 45 (1998), 135-142. [10] Fan, D., Yang, D.: Certain maximal oscillatory singular integrals, Hiroshima Math. J., 28 (1998), 169-182. [11] Fefferman, R.: A note on singular integrals, Proc. Amer. Math. Soc 74 (1979), 266-270. [12] Jiang, Y. and Lu, S. Z.: Oscillatory singular integrals with rough kernels, in "Harmonic Analysis in China, Mathematics and Its Applications", Vol. 327, 135-145, Kluwer Academic Publishers, 1995. [13] Lu, S. Z. and Zhang, Y.: Criterion on $L^p$ -boundedness for a class of oscillatory singular integrals with rough kernels, Rev. Math. Iberoamericana 8 (1992), 201-219. [14] Ricci, F. and Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, Jour. Func. Anal. 73 (1987), 179-194. [15] Ricci, F. and Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals II: Singular kernels supported on submanifolds, Jour. Func. Anal. 78 (1988), 56-84. [16] Stein, E. M.: Problems in harmonic analysis related to curvature and oscillatory Integrals, Proc. Inter. Cong. Math., Berkeley (1986), 196-221. [17] Stein, E. M.: Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970. [18] Stein, E. M.: Harmonic Analysis: Real-Variable Mathods, Orthogonality and Oscillatory integrals, Princeton University Press, Princeton, NJ, 1993. [19] Stein, E. M. and Wainger, S.: Problems in harmonic analysis related to curvature, Bull.Amer. Math. Soc. 26 (1978),1239-1295.