On Space of Parabolic Potentials Associated with the Singular Heat Operator

Anisotropic spaces Lp,ga of parabolic Bessel potentials, associated with the singular heat operator I-Dg+ \frac{\partial}{\partial t}, where Dg = \sum\limitsk=1n \frac{\partial 2}{\partial xk2} + \frac{2g }{xn}. \frac{\partial}{\partial xn}, are introduced, and making use of special wavelet-type transform, a characterization of these spaces is obtained.

On Space of Parabolic Potentials Associated with the Singular Heat Operator

Anisotropic spaces Lp,ga of parabolic Bessel potentials, associated with the singular heat operator I-Dg+ \frac{\partial}{\partial t}, where Dg = \sum\limitsk=1n \frac{\partial 2}{\partial xk2} + \frac{2g }{xn}. \frac{\partial}{\partial xn}, are introduced, and making use of special wavelet-type transform, a characterization of these spaces is obtained.

___

  • I.A. Aliev and B. Rubin, Parabolic potentials and wavelet transforms with the generalized translation, Studia Mathematica, 145(1), (2001), 1-16.
  • I.A. Aliev and B. Rubin, Parabolic wavelet transforms and Lebesque space of parabolic potentials, Rocky Mountain Journal of Math., v.32, No:2 (2002), 391-408.
  • I.A. Aliev, The properties and inversion of B-parabolic potentials, in: Special Problems of Math. and Mech., “Bilik”, Baku, (1992), 56-75 (in Russian).
  • O. Arena, On a singular parabolic equation related to axially symmetric heat potentials, Ann. Math. Pura Appl. 105(1975), 347-393.
  • R. Bagby, Lebesque spaces of parabolic potentials, Illinois J. Math., 15(1971), 610-634.
  • S. Chanillo, Hypersingular integrals and parabolic potentials, Trans. Amer. Math. Soc., (1981), 531-547.
  • V.R. Gopala Rao, A characterization of parabolic function spaces, Amer. J. Math., 99(1977), 993.
  • B.F. Jones, Lipschitz spaces and heat equation, J. Math. Mech. 18(1968), 379-410.
  • I.A. Kipriyanov, Singular Elliptic Boundary Value Problems, Nauka, Fizmatlit, Moscow, (in Russian). V.A. Nogin and B. Rubin, The spaces Lα(Rn+1) of parabolic potentials, Anal. Math., p,r (1987), 321-338.
  • B. Rubin, The Fractional integrals and wavelet transforms related to the Blaschke-Levy representation and the spherical Radon transform, Israel J. Math., 114(1999), 1-27.
  • S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
  • C.H. Sampson, A characterization of parabolic Lebesque spaces, Dissertation, Rice Univ. K. Stempak, La th´eorie de Littlewood-Paley pour la transformation de Fourier-Bessel,C.R. Acad. Sci. Paris, s´er.I 303(1986), 15-18.
  • Sinem SEZER, Ilham A. ALIEV Akdeniz University, Department of Mathematics, Antalya-TURKEY e-mail: sinemsezer@akdeniz.edu.tr e-mail: ialiev@akdeniz.edu.tr