Global existence and energy decay for a coupled system of Kirchhoff beam equations with weakly damping and logarithmic source
Global existence and energy decay for a coupled system of Kirchhoff beam equations with weakly damping and logarithmic source
This paper deals with the global solutions and exponential stability for a coupled system of Kirchhoff beam weakly damping and with a logarithmic source. We apply the potential well and establish the global well-posedness by using the Faedo–Galerkin approximations, taking into account that the initial data is located in a suitable set of stability created from the Nehari manifold. Moreover, by using Nakao’s lemma, we prove the exponential stability of the solution.
___
- [1] Ambrosetti A, Rabinowitz PH. Dual variational methods in critical point theory and applications. Journal of Functional Analysis 1973; 14: 349-381. doi: 10.1016/0022-1236(73)90051-7
- [2] Ball JM. Initial boundary value problem for an extensible beam. Journal of Mathematical Analysis and Application 1973; 42: 61-90. doi: 10.1016/0022-247X(73)90121-2
- [3] Berger M. A new approach to the large deflection of plates. Journal of Applied Mechanics 1955; 22: 465-472. doi: 10.1115/1.4011138
- [4] Bernstein S. Sur une class déquations fonctionelles aux derivée partielles. Izvestiya Akademii Nauk SSSR. Seriya matematicheskaya 1940; 46: 17-26.
- [5] Caristi G, Heidarkhani S, Salari A. Variational approaches to Kirchhoff-type second-order impulsive differential equations on the half-line,. Results in Mathematics 2018; 73: Article number 44. doi: 10.1007/s00025-018-0772-2
- [6] Caristi G, Heidarkhani S, Salari A, Tersian SA. Multiple solutions for degenerate nonlocal problems. Applied Mathematics Letters 2018; 84: 26-33. doi: 10.1016/j.aml.2018.04.007
- [7] Coddington EA, Levinson N. Theory of ordinary differential equations. New York, USA: McGraw-Hill Inc., 1955.
- [8] Carrier CF. On the non-linear vibration problem of the elastic string. Quarterly of Applied Mathematics 1945; 3: 157-165. doi: 10.1090/QAM/12351
- [9] Cavalcanti MM, Domingos Cavalcanti VN, Soriano JA. Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation. Communications in Contemporary Mathematics 2004; 06: 705- 731. doi: 10.1142/S0219199704001483
- [10] Cavalcanti MM, Domingos Cavalcanti VN, Jorge Silva MA, Webler CM. Exponential stability for the wave equation with degenerate nonlocal weak damping. Israel Journal of Mathematics 2017; 219: 189–213. doi: 10.1007/s11856- 017-1478-y
- [11] Chueshov I, Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping. Memoirs of the American Mathematical Society, 195, Providence, RI, 2008.
- [12] Ding P, Yang Z. Attractors of the strongly damped Kirchhoff wave equation on $R^n$. Communications on Pure and Applied Analysis 2019; 18: 825-843. doi: 10.3934/cpaa.2019040
- [13] Evans LC. Partial differential equations, American Mathematical Society, 1998.
- [14] Ferreira J, Benabidallah R, Muñoz Rivera JE. Asymptotic behaviour for the nonlinear beam equation in a timedependent domain. Rendiconti di Matematica e delle sue Applicazioni 1999; 19: 177-193.
- [15] Ferreira J, Pereira DC, Santos ML. Stability for a coupled system of wave equations of Kirchhoff type with nonlocal boundary conditions. Electronic Journal of Differential Equations 2003; 85: 1-17.
- [16] Gorka P. Logarithmic Klein-Gordon equation. Acta Physica Polonica B 2009; 40: 59-66.
- [17] Graef JR, Heidarkhani S, Kong L. A variational approach to a Kirchhoff-type problem involving a parameter. Results in Mathematics 2013; 63: 877-889. doi: 10.1007/s00025-012-0238-x
- [18] Heidarkhani S, Afrouzi GA, Moradi S, Existence results for a Kirchhoff-type second-order differential equation on the half-line with impulses. Asymptotic Analysis 2017; 105: 137-158. doi: 10.3233/ASY-171437
- [19] Heidarkhani S, Ferrara M, Caristi G, Salari A. Multiplicity results for Kirchhoff-type three-point boundary value problems. Acta Applicandae Mathematicae 2018; 156: 133-157. doi: 10.1007/s10440-018-0157-2
- [20] Jorge Silva MA, Narciso V. Long-time behavior for a plate equation with nonlocal weak damping. Differential and Integral Equations 2014; 27: 931-948.
- [21] Kirchhoff G. Vorlesungen über mechanik. Tauber, Leipzig, 1883.
- [22] Lions JL. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969.
- [23] Lobato RFC, Pereira DC, Santos ML. Exponential decay to the degenerate nonlinear coupled beams system with weak damping. ISRN Mathematical Physics 2012; Article ID 659289. doi: 10.5402/2012/659289
- [24] Ma TF. Boundary stabilization for a non-linear beam on elastic bearings. Mathematical Methods in the Applied Sciences 2001; 24: 583-594. doi: 10.1002/mma.230
- [25] Ma H, Chen B, Xie J. Long-time dynamics of Kirchhoff equations with exponential nonlinearities. Journal of Mathematical Physics 2020; 61: Article ID 031503 doi: 10.1063/1.5123387
- [26] Ma L, Fang ZB. Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source. Mathematical Methods in the Applied Sciences 2018; 41: 2639-2653. doi: 10.1002/mma.4766
- [27] Ma H, Zhong C. Attractors for the Kirchhoff equations with strong nonlinear damping. Applied Mathematics Letters 2017; 74: 127-133. doi: 10.1016/j.aml.2017.06.002
- [28] Miklin SG. Variational methods in mathematical pysics. Pergamon Press, Oxford, 1964.
- [29] Nakao M. Decay of solutions for some nonlinear evolution equations. Journal of Mathematical Analysis and Applications 1977; 60: 542-549. doi: 10.1016/0022-247X(77)90040-3
- [30] Ohta M. Remarks on blowup of solutions for nonlinear evolution equations of second order. Advances in Mathematical Sciences and Applications 1998; 8: 901-910.
- [31] Park JY, Bae JJ. On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Applied Mathematics and Computation 2002; 129: 87-105. doi: 10.1016/S0096-3003(01)00031-5
- [32] Payne LE, Sattinger DH. Saddle points and instability of nonlinear hyperbolic equations. Israel Journal of Mathematics 1975; 22: 273-303.
- [33] Pereira DC, Hguyen HH, Raposo CA, Maranhão CHM. On the solutions for an extensible beam equation with internal damping and source terms. Differential Equations & Applications 2019; 11: 367-377. doi: dx.doi.org/10.7153/dea-2019-11-17
- [34] Pereira DC, Lobato RFC, Raposo CA, Energy decay to an abstract coupled system of extensible beams models. Applied Mathematics & Information Sciences 2012; 6: 447-452.
- [35] Pişkin E. Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms. Open Mathematics, 2015; 13: 408-420. doi: 10.1515/math-2015-0040
- [36] Pişkin E, Ekinci F, Nonexistence of global solutions for coupled kirchhoff-type equations with degenerate damping terms. Journal of Nonlinear Functional Analysis 2018; 2018: Article ID 48 doi: 10.23952/jnfa.2018.48
- [37] Pişkin E, Irkıl N. Blow up of positive initial-energy solutions for the extensible beam equation with nonlinear damping and source terms. Facta Universitatis, Series: Mathematics and Informatics 2016; 31: 645-654.
- [38] Pişkin E, Yüksekkaya H. Non-existence of solutions for a Timoshenko equations with weak dissipation. Mathematica Moravica 2018; 22: 1-9. doi: 10.5937/MatMor1802001P
- [39] Pucci P, Saldi S. Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator. Journal of Differential Equations 2017; 263: 2375-2418. doi: 10.1016/j.jde.2017.02.039
- [40] Tucsnak M. Semi-internal stabilization for a nonliner Euler-Bernoulli equation. Mathematical Methods in the Applied Sciences, 1996; 19: 897-907.
- [41] Yang ZJ. On an extensible beam equation with nonlinear damping and source terms. Journal of Differential Equations 2013; 254: 3903-3927. doi: 10.1016/j.jde.2013.02.008
- [42] Yang Z, Wang Y, Global attractor for the Kirchhoff equation with a strong dissipation. Journal of Differential Equations 2010; 249: 3258-3278.
- [43] Yang Z, Ding P, Liu Z. Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity. Applied Mathematics Letters 2014; 33: 12-17. doi: 10.1016/j.jde.2010.09.024
- [44] Ye Y. Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave equations. Differential Equations and Nonlinear Mechanics 2007; 2007: Article ID 019685 doi: 10.1155/2007/19685
- [45] Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications 24, Birkhouser Boston Inc., Boston, MA, 1996.
- [46] Zhao C, Ma S, Zhong C, Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity. Journal of Mathematical Physics 2020; 61: Article ID 032701 doi: 10.1063/1.5128686
- [47] Zennir K, Boulaaras S, Haiour M, Bayoud M. Wave Equation with Logarithmic Nonlinearities in Kirchhoff Type. Applied Mathematics & Information Sciences, 2016; 10: 2163-2172.