Global existence and energy decay for a coupled system of Kirchhoff beam equations with weakly damping and logarithmic source

Global existence and energy decay for a coupled system of Kirchhoff beam equations with weakly damping and logarithmic source

This paper deals with the global solutions and exponential stability for a coupled system of Kirchhoff beam weakly damping and with a logarithmic source. We apply the potential well and establish the global well-posedness by using the Faedo–Galerkin approximations, taking into account that the initial data is located in a suitable set of stability created from the Nehari manifold. Moreover, by using Nakao’s lemma, we prove the exponential stability of the solution.

___

  • [1] Ambrosetti A, Rabinowitz PH. Dual variational methods in critical point theory and applications. Journal of Functional Analysis 1973; 14: 349-381. doi: 10.1016/0022-1236(73)90051-7
  • [2] Ball JM. Initial boundary value problem for an extensible beam. Journal of Mathematical Analysis and Application 1973; 42: 61-90. doi: 10.1016/0022-247X(73)90121-2
  • [3] Berger M. A new approach to the large deflection of plates. Journal of Applied Mechanics 1955; 22: 465-472. doi: 10.1115/1.4011138
  • [4] Bernstein S. Sur une class déquations fonctionelles aux derivée partielles. Izvestiya Akademii Nauk SSSR. Seriya matematicheskaya 1940; 46: 17-26.
  • [5] Caristi G, Heidarkhani S, Salari A. Variational approaches to Kirchhoff-type second-order impulsive differential equations on the half-line,. Results in Mathematics 2018; 73: Article number 44. doi: 10.1007/s00025-018-0772-2
  • [6] Caristi G, Heidarkhani S, Salari A, Tersian SA. Multiple solutions for degenerate nonlocal problems. Applied Mathematics Letters 2018; 84: 26-33. doi: 10.1016/j.aml.2018.04.007
  • [7] Coddington EA, Levinson N. Theory of ordinary differential equations. New York, USA: McGraw-Hill Inc., 1955.
  • [8] Carrier CF. On the non-linear vibration problem of the elastic string. Quarterly of Applied Mathematics 1945; 3: 157-165. doi: 10.1090/QAM/12351
  • [9] Cavalcanti MM, Domingos Cavalcanti VN, Soriano JA. Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation. Communications in Contemporary Mathematics 2004; 06: 705- 731. doi: 10.1142/S0219199704001483
  • [10] Cavalcanti MM, Domingos Cavalcanti VN, Jorge Silva MA, Webler CM. Exponential stability for the wave equation with degenerate nonlocal weak damping. Israel Journal of Mathematics 2017; 219: 189–213. doi: 10.1007/s11856- 017-1478-y
  • [11] Chueshov I, Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping. Memoirs of the American Mathematical Society, 195, Providence, RI, 2008.
  • [12] Ding P, Yang Z. Attractors of the strongly damped Kirchhoff wave equation on $R^n$. Communications on Pure and Applied Analysis 2019; 18: 825-843. doi: 10.3934/cpaa.2019040
  • [13] Evans LC. Partial differential equations, American Mathematical Society, 1998.
  • [14] Ferreira J, Benabidallah R, Muñoz Rivera JE. Asymptotic behaviour for the nonlinear beam equation in a timedependent domain. Rendiconti di Matematica e delle sue Applicazioni 1999; 19: 177-193.
  • [15] Ferreira J, Pereira DC, Santos ML. Stability for a coupled system of wave equations of Kirchhoff type with nonlocal boundary conditions. Electronic Journal of Differential Equations 2003; 85: 1-17.
  • [16] Gorka P. Logarithmic Klein-Gordon equation. Acta Physica Polonica B 2009; 40: 59-66.
  • [17] Graef JR, Heidarkhani S, Kong L. A variational approach to a Kirchhoff-type problem involving a parameter. Results in Mathematics 2013; 63: 877-889. doi: 10.1007/s00025-012-0238-x
  • [18] Heidarkhani S, Afrouzi GA, Moradi S, Existence results for a Kirchhoff-type second-order differential equation on the half-line with impulses. Asymptotic Analysis 2017; 105: 137-158. doi: 10.3233/ASY-171437
  • [19] Heidarkhani S, Ferrara M, Caristi G, Salari A. Multiplicity results for Kirchhoff-type three-point boundary value problems. Acta Applicandae Mathematicae 2018; 156: 133-157. doi: 10.1007/s10440-018-0157-2
  • [20] Jorge Silva MA, Narciso V. Long-time behavior for a plate equation with nonlocal weak damping. Differential and Integral Equations 2014; 27: 931-948.
  • [21] Kirchhoff G. Vorlesungen über mechanik. Tauber, Leipzig, 1883.
  • [22] Lions JL. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969.
  • [23] Lobato RFC, Pereira DC, Santos ML. Exponential decay to the degenerate nonlinear coupled beams system with weak damping. ISRN Mathematical Physics 2012; Article ID 659289. doi: 10.5402/2012/659289
  • [24] Ma TF. Boundary stabilization for a non-linear beam on elastic bearings. Mathematical Methods in the Applied Sciences 2001; 24: 583-594. doi: 10.1002/mma.230
  • [25] Ma H, Chen B, Xie J. Long-time dynamics of Kirchhoff equations with exponential nonlinearities. Journal of Mathematical Physics 2020; 61: Article ID 031503 doi: 10.1063/1.5123387
  • [26] Ma L, Fang ZB. Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source. Mathematical Methods in the Applied Sciences 2018; 41: 2639-2653. doi: 10.1002/mma.4766
  • [27] Ma H, Zhong C. Attractors for the Kirchhoff equations with strong nonlinear damping. Applied Mathematics Letters 2017; 74: 127-133. doi: 10.1016/j.aml.2017.06.002
  • [28] Miklin SG. Variational methods in mathematical pysics. Pergamon Press, Oxford, 1964.
  • [29] Nakao M. Decay of solutions for some nonlinear evolution equations. Journal of Mathematical Analysis and Applications 1977; 60: 542-549. doi: 10.1016/0022-247X(77)90040-3
  • [30] Ohta M. Remarks on blowup of solutions for nonlinear evolution equations of second order. Advances in Mathematical Sciences and Applications 1998; 8: 901-910.
  • [31] Park JY, Bae JJ. On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Applied Mathematics and Computation 2002; 129: 87-105. doi: 10.1016/S0096-3003(01)00031-5
  • [32] Payne LE, Sattinger DH. Saddle points and instability of nonlinear hyperbolic equations. Israel Journal of Mathematics 1975; 22: 273-303.
  • [33] Pereira DC, Hguyen HH, Raposo CA, Maranhão CHM. On the solutions for an extensible beam equation with internal damping and source terms. Differential Equations & Applications 2019; 11: 367-377. doi: dx.doi.org/10.7153/dea-2019-11-17
  • [34] Pereira DC, Lobato RFC, Raposo CA, Energy decay to an abstract coupled system of extensible beams models. Applied Mathematics & Information Sciences 2012; 6: 447-452.
  • [35] Pişkin E. Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms. Open Mathematics, 2015; 13: 408-420. doi: 10.1515/math-2015-0040
  • [36] Pişkin E, Ekinci F, Nonexistence of global solutions for coupled kirchhoff-type equations with degenerate damping terms. Journal of Nonlinear Functional Analysis 2018; 2018: Article ID 48 doi: 10.23952/jnfa.2018.48
  • [37] Pişkin E, Irkıl N. Blow up of positive initial-energy solutions for the extensible beam equation with nonlinear damping and source terms. Facta Universitatis, Series: Mathematics and Informatics 2016; 31: 645-654.
  • [38] Pişkin E, Yüksekkaya H. Non-existence of solutions for a Timoshenko equations with weak dissipation. Mathematica Moravica 2018; 22: 1-9. doi: 10.5937/MatMor1802001P
  • [39] Pucci P, Saldi S. Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator. Journal of Differential Equations 2017; 263: 2375-2418. doi: 10.1016/j.jde.2017.02.039
  • [40] Tucsnak M. Semi-internal stabilization for a nonliner Euler-Bernoulli equation. Mathematical Methods in the Applied Sciences, 1996; 19: 897-907.
  • [41] Yang ZJ. On an extensible beam equation with nonlinear damping and source terms. Journal of Differential Equations 2013; 254: 3903-3927. doi: 10.1016/j.jde.2013.02.008
  • [42] Yang Z, Wang Y, Global attractor for the Kirchhoff equation with a strong dissipation. Journal of Differential Equations 2010; 249: 3258-3278.
  • [43] Yang Z, Ding P, Liu Z. Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity. Applied Mathematics Letters 2014; 33: 12-17. doi: 10.1016/j.jde.2010.09.024
  • [44] Ye Y. Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave equations. Differential Equations and Nonlinear Mechanics 2007; 2007: Article ID 019685 doi: 10.1155/2007/19685
  • [45] Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications 24, Birkhouser Boston Inc., Boston, MA, 1996.
  • [46] Zhao C, Ma S, Zhong C, Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity. Journal of Mathematical Physics 2020; 61: Article ID 032701 doi: 10.1063/1.5128686
  • [47] Zennir K, Boulaaras S, Haiour M, Bayoud M. Wave Equation with Logarithmic Nonlinearities in Kirchhoff Type. Applied Mathematics & Information Sciences, 2016; 10: 2163-2172.
Turkish Journal of Mathematics-Cover
  • ISSN: 1300-0098
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Existence of solutions for an infinite system of tempered fractional order boundary value problems in the spaces of tempered sequences

Khuddush MAHAMMAD, Rajendra Prasad KAPULA, Leela DODDI

A sequential fractional differential problem of pantograph type: existence uniqueness and illustrations

Soumia BELARBI, Mehmet Zeki SARIKAYA, Zoubir DAHMANI

Multiple positive solutions for nonlinear fractional q -difference equation with p-Laplacian operator

Shurong SUN, Zhongyun QIN, Zhenlai HAN

A discussion on the existence and uniqueness analysis for the coupled two-term fractional differential equations

Sachin Kumar VERMA, Ramesh Kumar VATS, Velusamy VIJAYAKUMAR, Anurag SHUKLA, Avadhesh KUMAR

On the existence for parametric boundary value problems of a coupled system of nonlinear fractional hybrid differential equations

Yige ZHAO, Yibing SUN

Mathematical analysis of local and global dynamics of a new epidemic model

Sümeyye ÇAKAN

Global existence and energy decay for a coupled system of Kirchhoff beam equations with weakly damping and logarithmic source

Ducival Carvalho PEREIRA, Adriano Pedreira CATTAI, Carlos Alberto RAPOSO

Solving nonlinear integro-differential equations using numerical method

Nedjem Eddine RAMDANI, Sandra PINELAS

On stability and oscillation of fractional differential equations with a distributed delay

Limei FENG, Shurong SUN

Scattering theory of the quadratic eigenparameter depending impulsive Sturm–Liouville equations

Elgiz BAIRAMOV, Güler Başak ÖZNUR