Improved inequalities related to the A-numerical radius for commutators of operators

Improved inequalities related to the A-numerical radius for commutators of operators

Let $textit{A}$ be a positive bounded linear operator on a complex Hilbert space $mathcal{H}$ and $B_{A}(mathcal{H})$ be the subspace of all operators which admit $textit{A}$-adjoints operators. In this paper, we establish some inequalities involving the commutator and the anticommutator of operators in semi-Hilbert spaces, i.e. spaces generated by positive semidefinite sesquilinear forms. Mainly, among other inequalities, we prove that for $T,Sin B_{A}(mathcal{H})$ we have $w_{A}(TSpm ST)leq 2sqrt{2}minleft { f_{A}(T,S),f_{A}(S,T) right },$ where $ f_{A}(X,Y)=left | Y right |_{A}sqrt{w_{A}^{2}(X)-frac{left | left |frac{X+X^{sharp}A}{2}right |_{A}^{2} right |}{2}-frac{left | left |frac{X-X^{sharp}A}{2}right |_{A}^{2} right |}{2i}}.$ This covers and improves the well-known inequalities of Fong and Holbrook. Here $w_{A}(.) and left | . right |_{A}$ are the $textit{A}$-numerical radius and the $textit{A}$-operator seminorm of semi-Hilbert space operators, respectively and $X^{sharp A}$ denotes a distinguished $textit{A}$-adjoint operator of $textit{X}$ .

___

  • [1] Abu-Omar A, Kittaneh F. Numerical radius inequalities for products and commutators of operators. Houston journal of mathematics 41(4):1163-1173.
  • [2] Arias ML, Corach G, Gonzalez MC. Partial isometries in semi-Hilbertian spaces. Linear algebra and its applications 2008; 428 (7): 1460-1475.
  • [3] Arias ML, Corach G, Gonzalez MC. Metric properties of projections in semi-Hilbertian spaces. Integral Equations Operator Theory 2008; 62 (1): 11-28.
  • [4] Arias ML, Corach G, Gonzalez MC. Lifting properties in operator ranges, Acta Scientiarum Mathematicarum 2009; 75 (3-4): 635-653.
  • [5] Baklouti H, Feki K, Sid Ahmed OAM. Joint numerical ranges of operators in semi-Hilbertian spaces. Linear algebra and its applications 2018; 555: 266-284.
  • [6] Baklouti H, Feki K, Sid Ahmed OAM. Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 2020; 68 (4): 845-866.
  • [7] Bhunia P, Feki K, Paul K. A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications. Bulletin of the Iranian Mathematical Society 2021; 47: 435-457.
  • [8] Bhunia P, Paul K, Nayek R. On inequalities for A-numerical radius of operator. Electronic Journal of Linear Algebra 2020; 36: 143-157.
  • [9] Bhunia P, Nayek R, Paul K. Improvement of A-Numerical radius inequalities of semi-Hilbertian space operators. Results in Mathematics 2021; 76 (120). doi: 10.1007/s00025-021-01439-w
  • [10] Bhunia P, Nayek R, Paul K. Refinements of A-numerical radius inequalities and their applications. Advances in Operator Theory 2020; 5: 1498-1511.
  • [11] Bhunia P, Paul K. New upper bounds for the numerical radius of Hilbert space operators. Bulletin des Sciences Mathématiques 2021; 167: 102959.
  • [12] Bottazzi T, Conde C, Feki K. On A-parallelism and A-Birkhoff-James orthogonality of operators. Results in Mathematics 2021; 76 (209). doi: 10.1007/s00025-021-01515-1
  • [13] de Branges L, Rovnyak J. Square Summable Power Series. New York, Holt, Rinehart and Winston, 1966.
  • [14] Douglas R. On majorization, factorization and range inclusion of operators in Hilbert space. Proceedings of the American Mathematical Society 1966; 17: 413-416.
  • [15] Feki K. On tuples of commuting operators in positive semidefinite inner product spaces. Linear algebra and its applications 2020; 603: 313-328. doi: 10.1016/j.laa.2020.06.015
  • [16] Feki K. Spectral radius of semi-Hilbertian space operators and its applications. Annals of Functional Analysis 2020; 11: 929-946. doi: 10.1007/s43034-020-00064-y
  • [17] Feki K, Sid Ahmed OAM. Davis-Wielandt shells of semi-Hilbertian space operators and its applications. Banach Journal of Mathematical Analysis 2020; 14: 1281-1304. doi: 10.1007/s43037-020-00063-0
  • [18] Feki K. A note on the A-numerical radius of operators in semi-Hilbert spaces. Archiv der Mathematik 2020; 115: 535-544 (2020). doi: 10.1007/s00013-020-01482-z
  • [19] Feki K. Some numerical radius inequalities for semi-Hilbert space operators. Journal of the Korean Mathematical Society 2021; 58 (6): 1385-1405. doi: 10.4134/JKMS.j210017
  • [20] Feki K. Generalized numerical radius inequalities of operators in Hilbert spaces. Advances in Operator Theory 2021; 6 (6). doi: 10.1007/s43036-020-00099-x
  • [21] Fong C, Holbrook J. Unitary invariant operator norms, Canadian Journal of Mathematics 1983; 35: 274-299.
  • [22] Hirzallah O, Kittaneh F. Numerical radius inequalities for several operators. Mathematica Scandinavica 2014; 114: 110-119.
  • [23] Hou J, Du H. Norm inequalities of positive operator matrices. Integral Equations Operator Theory 1995; 22: 281- 294.
  • [24] Majdak W, Secelean N, Suciu L. Ergodic properties of operators in some semi-Hilbertian spaces. Linear Multilinear Algebra 2013; 61 (2): 139-159.
  • [25] Rout N, Sahoo S, Mishra D. On A-numerical radius inequalities for 2 × 2 operator matrices. Linear Multilinear Algebra 2020. doi: 10.1080/03081087.2020.1810201
  • [26] Saddi A. A-Normal operators in Semi-Hilbertian spaces. The Australian Journal of Mathematical Analysis and Applications 2012; 9 (1): 1-12.