Existence of solutions for an infinite system of tempered fractional order boundary value problems in the spaces of tempered sequences

Existence of solutions for an infinite system of tempered fractional order boundary value problems in the spaces of tempered sequences

This paper deals with infinite system of nonlinear two-point tempered fractional order boundary value problems $_{0}^{RL}textrm{}mathbb{D}_{mathbf{z}}^{delta _{2},ell}left [mathbf{p}_{j}(mathbf{z})_{0}^{RL}textrm{}mathbb{D}_{mathbf{z}}^{delta _{1},ell}vartheta _{j}(mathbf{z}) right ]=lambda _{j}varphi(mathbf{z},vartheta(mathbf{z})),mathbf{z}in left [ 0, mathbf{T}right ],delta _{1},delta _{2}in left ( 1,2 right ),$ $vartheta _{j}(0)=lim_{mathrm{z} to 0}left [ _{0}^{RL}textrm{}mathbb{D}_{mathrm{z}}^{delta _{1},ell}left ( e^{ellmathrm{z}}vartheta _{j}(mathrm{z}) right ) right ]=0,$ $e^{ellmathrm{T}}vartheta _{j}(mathbf{T})=lim_{mathrm{z} to mathrm{T} }left [ _{0}^{RL}textrm{}mathbb{D}_{mathrm{z}}^{delta _{1},ell}left ( e^{ellmathrm{z}}vartheta _{j}(mathrm{z}) right ) right ]=0,$ where $j inleft { 1,2,3,... right }, ellgeqslant 0,_{0}^{RL}textrm{}mathbb{D}_{mathrm{z}}^{star ,ell}$ denotes the Riemann–Liouville tempered fractional derivative of order $starinleft { delta _{1},delta _{2} right } , vartheta (mathbf{z})=(vartheta_{j}(mathbf{z}))_{j=1}^{infty },varphi _{j}:left [ 0,mathbf{T} right ]rightarrow left [ 0,mathbf{T} right ]$ are continuous and we derive sufficient conditions for the existence of solutions to the system via the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in tempered sequence spaces.

___

  • [1] Aghajani A, Mursaleen M, Haghighi AS. Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness. Acta Mathematica Scientia 2015; 35 (3): 552-566.
  • [2] Alotaibi A, Mursaleen M, Mohiuddine SA. Application of measure of noncompactness to infinite system of linear equations in sequence spaces. Bulletin of the Iranian Mathematical Society 2015; 41: 519-527.
  • [3] Bai Z, Lu H. Positive solutions for a boundary value problem of nonlinear fractional differential equations. Journal of Mathematical Analysis and Applications 2005; 311: 495-505.
  • [4] Banas, J. On measures of noncompactness in Banach spaces. Commentationes Mathematicae Universitatis Carolinae 1980; 21: 131-143.
  • [5] Banas J, Krajewska M. Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electronic Journal of Differential Equations, 2017; (2017)(60): 1-28.
  • [6] Banas J, Mursaleen M. Sequence spaces and measures of noncompactness with applications to differential and integral equations. New Delhi, India: Springer, 2014.
  • [7] Cartea A, Castillo-Negrete DD. Fractional diffusion models of option prices in markets with jumps. Physica A: Statistical Mechanics and its Applications 2007; 374 (2): 749-763.
  • [8] Cichon M, Salem HAH. On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems. Journal of Pseudo-Differential Operators and Applications 2020; 11: 1869-1895.
  • [9] Das A, Hazarika B, Agarwal RP, Nashine HK. Solvability of infinite systems of fractional differential equations in the spaces of tempered sequences. Filomat 2019; 33(17): 5519-5530.
  • [10] Debanath L. Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences 2003; Article ID 753601, 30 pages. doi:10.1155/S0161171203301486
  • [11] Hanyga A. Wave propagation in media with singular memory. Mathematical and computer modelling 2001; 34 (12-13): 1399-1421.
  • [12] He JQ, Dong Y, Li ST, Liu HL, Yu YJ et al. Study on force distribution of the tempered glass based on laser interference technology. Optik 2015; 126 (24): 5276-5279.
  • [13] Khuddush M, Prasad KR. Infinitely many positive solutions for an iterative system of conformable fractional order dynamic boundary value problems on time scales. Turkish Journal of Mathematics 2021. doi: 10.3906/mat-2103-117
  • [14] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, North Holland, 2006.
  • [15] Kuratowski K. Sur les espaces completes. Fundamenta Mathematicae 1930; 15: 301-309 (in French).
  • [16] Li C, Deng W, Zhao L. Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Discrete and Continuous Dynamical Systems 2019; 24 (4): 1989-2015.
  • [17] Meerschaert MM, Zhang Y, Baeumer B. Tempered anomalous diffusion in heterogeneous systems. Geophysical Research Letters 2008; 35 (17): 1-5.
  • [18] Meerschaert MM, Sabzikar F, Phanikumar MS, Zeleke A. Tempered fractional time series model for turbulence in geophysical flows. Journal of Statistical Mechanics: Theory and Experiment 2014; 2014 (9): P09023.
  • [19] Meir A, Keeler E. A theorem on contraction mappings. Journal of Mathematical Analysis and Applications 1969; 28: 326-329.
  • [20] Mursaleen M, Bilal B, Rizvi SMH. Applications of measure of noncompactness to infinite system of fractional differential equations. Filomat 2017; 31 (11): 3421-3432.
  • [21] Mursaleen M, Mohiuddine SA. Applications of measures of noncompactness to the infinite system of differential equations in ℓp spaces. Nonlinear Analysis 2012; 75: 2111-2115.
  • [22] Mursaleen M, Rizvi SMH, Samet B. Solvability of a class of boundary value problems in the space of convergent sequences. Applicable Analysis 2018; 97 (11): 1829-1845.
  • [23] Muthaiah S, Baleanu D, Thangaraj NG. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics 2021; 6 (1): 168-194.
  • [24] Pandey PK, Pandey RK, Yadav S, Agrawal OP. Variational approach for tempered fractional Sturm-Liouville Problem. International Journal of Applied and Computational Mathematics 2021; 7 (51). doi: 10.1007/s40819-021- 01000-x
  • [25] Prasad KR, Khuddush M, Veeraiah P. Countably many positive solutions for singular R-L fractional order bvp with R-S integral boundary conditions. Nonlinear Studies 2020; 27 (4): 1075-1089.
  • [26] Prasad KR, Khuddush M, Leela D. Existence of solutions for infinite systems of regular fractional SturmLiouville problems in the spaces of tempered sequences. Tbilisi Mathematical Journal 2020; 13 (4), 193-209. doi: 10.32513/tbilisi/1608606058
  • [27] Rabbani M, Das A, Hazarika B, Arab R. Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations. Chaos, Solitons and Fractals 2020; 140, 110221.
  • [28] Rosenau P. Tempered diffusion: A transport process with propagating fronts and inertial delay. Physical Review A 1992; 46 (12): R7371.
  • [29] Rosiak MN. Uncountably many nonoscillatory bounded solutions to second-order nonlinear neutral dynamic equations. Turkish Journal of Mathematics 2019; 43 (3): 1699-1711.
  • [30] Sabzikar F, Meerschaert MM, Chen J. Tempered fractional calculus. Journal of Computational Physics 2015; 293: 14-28.
  • [31] Salem A, Alshehri, HM. Almaghamsi, L. Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space. Advances in Difference Equations 2021, 132 (2021). doi: 10.1186/s13662-021-03302-2
  • [32] Srivastava HM. Diabetes and its resulting complications: Mathematical modeling via fractional calculus. Public Health Open Access 2020; 4 (3): 1-5.
  • [33] Srivastava HM, Das A, Hazarika B, Mohiuddine SA. Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces c0 and $ℓ_1$ via the measure of noncompactness. Mathematical Methods in the Applied Sciences 2018; 41 (10): 3558-3569.
  • [34] Srivastava HM, Das A, Hazarika B, Mohiuddine SA. Existence of solution for non-linear functional integral equations of two variables in Banach algebra. Symmetry 2019; 11: Article ID 674, 1-16.
  • [35] Srivastava HM, Saad KM, Khader MM, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Chaos, Solitons and Fractals 2020; 140: 1-7.
  • [36] Tarasov VE, Tarasova VV. Time dependent fractional dynamics with memory in quantum and economic physics. Annals of Physics 2017; 383: 579-599.
  • [37] Yadav S, Pandey RK, Pandey PK. Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation. International Journal of Numerical Methods in Fluids 2020. doi: 10.1002/fld.4901
  • [38] Yantir A, Kubiaczyk I, Sikorska-Nowak A. Nonlinear Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces. Bulletin of the Belgian Mathematical Society Simon Stevin 2013; 20: 587-601.
  • [39] Yantir A, Kubiaczyk I, Sikorska-Nowak A. Carathéodory solutions of Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces. Open Mathematics 2015; 13 (1).
  • [40] Zaky MA. Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Applied Numerical Mathods 2019; 145: 429-457.
  • [41] Zhou WX, Liu HZ. Existence solutions for boundary value problem of nonlinear fractional q -difference equations. Advances in Difference Equations 2013; 113 (2013). doi: 10.1186/1687-1847-2013-113