Generalized Sobolev-Shubin spaces, boundedness and Schatten class properties of Toeplitz operators

Let w and w be two weight functions on R2d and 1 \leq p,q \leq \infty. Also let M(p,q,w) (Rd) denote the subspace of tempered distributions S' (Rd) consisting of f \in S' (Rd) such that the Gabor transform Vg f of f is in the weighted Lorentz space L(p,q,w dm) (R2d) . In the present paper we define a space Qg,w^{M(p,q,w) (R^d) as counter image of M(p,q,w) (R^d) under Toeplitz operator with symbol w. We show that Qg,w^{M(p,q,w)}(R^d) is a generalization of usual Sobolev-Shubin space Qs (R^d). We also investigate the boundedness and Schatten-class properties of Toeplitz operators.

Generalized Sobolev-Shubin spaces, boundedness and Schatten class properties of Toeplitz operators

Let w and w be two weight functions on R2d and 1 \leq p,q \leq \infty. Also let M(p,q,w) (Rd) denote the subspace of tempered distributions S' (Rd) consisting of f \in S' (Rd) such that the Gabor transform Vg f of f is in the weighted Lorentz space L(p,q,w dm) (R2d) . In the present paper we define a space Qg,w^{M(p,q,w) (R^d) as counter image of M(p,q,w) (R^d) under Toeplitz operator with symbol w. We show that Qg,w^{M(p,q,w)}(R^d) is a generalization of usual Sobolev-Shubin space Qs (R^d). We also investigate the boundedness and Schatten-class properties of Toeplitz operators.

___

  • Berg, J., L¨ ofstr¨ om, J.: Interpolation Spaces, Springer-Verlag, Berlin 1976 .
  • Boggiatto, P., Toft, T.: Embeddings and compactness for generalized Sobolev-Shubin spaces and modulation spaces, Appl. Anal. 84 , No.3, 269-282 (2005) .
  • Boggiatto, P.: Localization operators with L p symbols on the modulation spaces, Universita di Torino, Quaderni del Dipartimento di Matematica, Quaderno N.7/2003, (2003) .
  • Boggiatto, P., Cordero, E., Gr¨ ochenig, K.: Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Int. Equ. Oper. Theory 48 , 427–442 (2004) .
  • Duyar, C., G¨ urkanlı, A.T.: Multipliers and relative completion in weighted Lorentz space, Acta Math. Sci. 23B (4) , 467–476 (2003) .
  • Edmunds, D.E., Evans, W.D.: Hardy Operators Function Spaces and Embeddings, Springer Berlin Heidelberg New York 2004 .
  • Feichtinger, H.G.: Banach convolution algebras of Wiener type, in Proc. Conf. on Functions, Series, Operators, Budapest 1980, North Holland, Colloq. Math. Soc. Janos Bolyai, vol.35, [Amsterdam], 509–524 (1983).
  • Feichtinger, H.G., Gr¨ ochenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal., 86 (2) , 307–340 (1989) .
  • Feichtinger, H.G., G¨ urkanlı, A.T.: On a family of weighted convolution algebras, Int. J. Math. Math. Sci. 13 , No. 3, 517–526 (1990) .
  • Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms Theory and Applications, Birkh¨ auser, Boston 1998 .
  • Fournier, J.J., Stewart, J.: Amalgams of L and , Bull. Amer. Math. Soc. 13 , 1–21 (1985) .
  • Gr¨ ochenig, K.: Foundation of Time-Frequency Analysis, Birkh¨ auser, Boston 2001 .
  • Gr¨ ochenig, K., Toft, T.: Isomorphism properties of Toeplitz operators in time-frequency analysis, Journal d’Analyse, 114 (1) , 255–283 (2011) .
  • G¨ urkanlı, A.T.: Time-frequency analysis and multipliers of the spaces M (p, q)   R d ¡ and S (p, q)   R d ¡ , J. Math. Kyoto Univ. 46 - 3 , 595–616 (2006) .
  • G¨ urkanlı, A.T.: On the inclusion of some Lorentz spaces, J. Math. Kyoto Univ. 44 - 2 , 441–450 (2004) .
  • Heil, C.: An introduction to weighted Wiener amalgams, in: Wavelets and their applications (Chennai, January 2002), M. Krishna, R. Radha, and S. Thangavelu, eds., Allied Publishers, New Delhi, 183–216 (2003) .
  • Holland, F.: Harmonic analysis on amalgams of L p and q , J. London Math. Soc. (2), 10, 295–305 (1975) . Hunt, R.A.: On L (p, q) spaces, Extrait de L’Enseignement Mathematique, T.XII, fasc.4, 249–276 (1966) . Quek, T.S., Yap, Y.H.L.: A test for membership in Lorentz spaces and some applications, Hokkaido Math. J. 17 , 279–288 (1988) .
  • Sandık¸cı, A., G¨ urkanlı, A.T.: The space Ω m R ¡ and some properties, Ukrainian Math. J. 58 No.1, 139–145 (2006) .
  • Sandık¸cı, A., G¨ urkanlı, A.T.: Gabor Analysis of the spaces M (p, q, w)   Ê Ê Math. Sci. 31B , 141–158 (2011) .
  • Wong, M.W.: Wavelet Transforms and Localization Operators, Birkh¨ auser 2002 .
  • Yap, Y.H.L.: On two classes of subalgebras of L 1 (G) , Proc. Japan Acad. 48 , 315–319 (1972) .