Generalized Heineken Mohamed type groups

Generalized Heineken Mohamed type groups

We prove that a torsion group G with all subgroups subnormal is a nilpotent group or G = N(A1 ×· · ·×An) is a product of a normal nilpotent subgroup N and pi -subgroups Ai , where Ai = A (i) 1 · · · A (i) mi ✁ G, A (i) j is a Heineken Mohamed type group, and p1, . . . , pn are pairwise distinct primes (n ≥ 1; i = 1, . . . , n; j = 1, . . . , mi and mi are positive integers).

___

  • [1] Arikan A, Asar AO. On periodic groups in which every proper subgroup is an NC -group. Turk J Math 1994; 18: 255–262.
  • [2] Asar AO. On nonnilpotent p-groups and the normalizer condition. Turk J Math 1994; 18: 114–129.
  • [3] Asar AO. A characterizations of NC -p-groups. Turk J Math 1997; 21: 475–483.
  • [4] Baumslag G. Wreath products and p-groups. P Cambridge Phil Soc 1959; 55: 224–231.
  • [5] Belyaev VV. Locally finite groups with almost abelian proper subgroups. Siberian Math J 1983; 24: 11–17.
  • [6] Belyaev VV, Kuzucuo˘glu M. Barely transitive and Heineken Mohamed groups. J London Math Soc 1997; 55: 261–263.
  • [7] Betin C, Kuzucuo˘glu M. Description of barely transitive groups with soluble point stabilizer. Comm Algebra 2009; 37: 1901–1907.
  • [8] Betten A. Hinreichende Kriterien f¨ur die Hyperzentralit¨at einer Gruppen. Arch Math (Basel) 1960; 30: 471–480 (in German).
  • [9] Bruno B, Phillips RE. A note on groups with nilpotent-by-finite proper subgroups. Arch Math (Basel) 1995; 65: 369–374.
  • [10] Carin VS. A remark on the minimal condition for subgroups. Dokl Akad Nauk SSSR (N.S.) 1949; 66: 575–576 (in ˇ Russian).
  • [11] Casolo C. On the structure of groups with all subgroups subnormal. J Group Theory 2002; 5: 293–300.
  • [12] Casolo C. Groups with many subnormal subgroups. Note Mat 2008; 28 (Suppl. 2): 1–149.
  • [13] Cernikov SN. Groups with Given Properties of a System of Subgroups. Moscow, USSR: Nauka, 1980 (in Russian). ˇ
  • [14] Hall P. Some sufficient condition for a group to be nilpotent. Illiniois J Math 1958; 2: 787–801.
  • [15] Hartley B. A note on the normalizer condition. P Cambridge Phil Soc 1973; 74: 11–15.
  • [16] Hartley B, Kuzucuo˘glu M. Non-simplicity of locally finite barely transitive groups. P Edinburgh Math Soc 1997; 40: 489–490.
  • [17] Heineken H. Normalizer condition and nilpotent normal subgroups. J London Math Soc 1971/72; 4: 458–460.
  • [18] Heineken H, Mohamed IJ. A group with trivial centre satisfying the normalizer condition. J Algebra 1968; 10: 368–376.
  • [19] Kegel OH, Wehrfritz BAF. Locally Finite Groups. Amsterdam, the Netherlands: North-Holland Publishing Co., 1973.
  • [20] Kuroˇs AG. The Theory of Groups. Moscow, USSR: Nauka, 1967 (in Russian).
  • [21] Kuzucuo˘glu M. Barely transitive permutation groups, Arch Math (Basel) 1990; 55: 521–532.
  • [22] Lennox JC, Robinson DJS. The Theory of Infinite Soluble Groups. Oxford, UK: Clarendon Press, 2004.
  • [23] Lennox JC, Stonehewer SE. Subnormal Subgroups of Groups. Oxford, UK: Clarendon Press, 1987.
  • [24] Menegazzo F. Groups of Heineken-Mohamed. J Algebra 1995; 171: 807–825.
  • [25] M¨ohres W. Torsiongruppen deren Untergruppen alle subnormal sind. Geom Dedicata 1989; 31: 237–244 (in German).
  • [26] M¨ohres W. Hyperzentrale Torsiongruppen deren Untergruppen alle subnormal sind. Illinois J Math 1991; 35: 147– 157 (in German).
  • [27] Robinson DJS. A Course in the Theory of Groups. New York, NY, USA: Springer-Verlag, 1980.
  • [28] Smith H. Groups that involve finitely many primes and have all subgroups subnormal. J Algebra 2011; 347: 133–142.