Extremal Lagrangian submanifolds in a complex space form $N^n(4c)$

Extremal Lagrangian submanifolds in a complex space form $N^n(4c)$

Let $N^n$(4c) be the complex space form of constant holomorphic sectional curvature $4c, varphi : M → N^n(4c)$ be an immersion of an n-dimensional Lagrangian manifold M in $N^n$(4c). Denote by S and H the square of the length of the second fundamental form and the mean curvature of M. Let $rho$ be the non-negative function on M defined by $rho^2=S-nH^2$, Q be the function which assigns to each point of M the infimum of the Ricci curvature at the point. In this paper, we consider the variational problem for non-negative functional $U(varphi) = int _M rho ^2dv = int_M(S − nH^2)dv$ . We call the critical points of $U(varphi)$ the Extremal submanifold in complex space form $N^n$(4c) . We shall get the new Euler-Lagrange equation of $U(varphi)$ and prove some integral inequalities of Simons’ type for n-dimensional compact Extremal Lagrangian submanifolds $varphi : M → N^n(4c)$ in the complex space form $N^n$(4c) in terms of $rho^2, Q,H$ and give some rigidity and characterization Theorems.

___

  • [1] Chen, B.Y.: Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital.10, 380-385 (1974).
  • [2] Chern, S. S., Do Carmo, M. and Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional Analysis and Related Fields (F. Brower, ed.), Springer-Verlag, Berlin 59-75 (1970).
  • [3] Guo, Z. and Li, H.: Avariational problem for submanifolds in a sphere, Monatsh. Math.152, 295-302 (2007).
  • [4] Guo, Z., Li, H. and Wang, C.P.: The second variation formula for Willmore submanifolds in Sn , Results in Math. 40,205-225 (2001).
  • [5] Hu, Z. and Li, H.: Willmore Lagrangian spheres in the complex Euclidean space Cn , Ann. of Global of Anal. and Geom. 25, 73-98 (2004).
  • [6] Hu, Z. and Li, H.: Willmore submanifolds in a Riemannian manifold, Proceedings of the workshop Contemporary Geometry and Related Topics, World Scientific, September 15, 275-299 (2003).
  • [7] Li, H.: Willmore submanifolds in a sphere, Math. Res. Letters 9, 771-790 (2002).
  • [8] Li, H. and Vrancken, L.: A basic inequality and new characterization of Whitney spheres in a complex space form, Israel J. of Math. 146,223-242 (2005).
  • [9] Ludden, G.D., Okumura, M. and Yano, K.: A totally real surface in CP2 that is not totally geodesic, Proc. of Amer. Math. Soc. 53,186-190 (1975).
  • [10] Montiel, S. and Urbano, F.: A Willmore functional for compact surfaces in the complex projective space, J. Reine Angew. Math. 546,139C154 (2002).
  • [11] Pedit, F.J. and Willmore, T.J.: Conformal geometry, Atti Sem. Mat. Fis, Univ Modena, XXXVI 237-245 (1988).
  • [12] Wang, C.P.: Moebius geometry of submanifolds in Sn , Manuscripta Math. 96, 517-534 (1998).