The equivalence of centro-equiaffine curves

The motivation of this paper is to find formulation of the SL(n,R)-equivalence of curves. The types for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced. The problem of SL(n,R)-equivalence of centro-equiaffine curves is reduced to that of paths. The centro-equiaffine curvatures of path as a generating system of the differential ring of SL(n,R)-invariant differential polinomial functions of path are found. Global conditions of SL(n,R)-equivalence of curves are given in terms of the types and invariants. It is proved that the invariants are independent.

The equivalence of centro-equiaffine curves

The motivation of this paper is to find formulation of the SL(n,R)-equivalence of curves. The types for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced. The problem of SL(n,R)-equivalence of centro-equiaffine curves is reduced to that of paths. The centro-equiaffine curvatures of path as a generating system of the differential ring of SL(n,R)-invariant differential polinomial functions of path are found. Global conditions of SL(n,R)-equivalence of curves are given in terms of the types and invariants. It is proved that the invariants are independent.

___

  • July 18-August 7, 1995. Singapore: World ScientiŞc, 85-94 (1996).
  • Barthel W.: Zur affinen Differentialgeometrie -Kurventheorie in der allgemeinen Affingeometrie, Proceedings of the Congress of Geometry, Thessaloniki, 5-19 (1987).
  • Blaschke W.: Affine Differentialgeometrie, Berlin, 1923.
  • Gardner R.B., Wilkens G.R.: The fundamental theorems of curves and hypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc.4, 379-401 (1997).
  • Guggenheimer H.W.: Differential Geometry, McGraw-Hill, New York, 1963.
  • Izumiya S., Sano T.: Generic affine differential geometry of space curves, Proceedings of the Royal Society of Edinburg, 128A, 301-314 (1998).
  • Khadjiev Dj.: The Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent,1988.
  • Khadjiev Dj., Pek¸sen ¨O.: The complete system of global integral and differential invariants for equi-affine curves, Diff. Geom. and its Applications 20, 167-175 (2004).
  • Klingenberg W.: A Course in Differential Geometry, Springer-Verlag, New York, 1978.
  • Laugwitz D.: Differentialgeometrie in Vectorraumen, Friedr. Vieweg and Sohn, Braunschweig, 1965.
  • Nomizu K., Sasaki T.: Affine Differential Geometry, Cambridge Univ. Press, 1994.
  • Paukowitsch H.P: BegleitŞguren und Invariantensystem minimaler Differentiationsordnung von Kurven im reellen n-dimensionalen affinen Raum, Mh. Math. 85, No.2, 137-148 (1978).
  • Pek¸sen ¨O., Khadjiev Dj.: On invariants of curves in centro-affine geometry, J.Math. Kyoto Univ. 44 (3), 603-613 (2004).
  • Salkowski E.: Affine Differentialgeometrie, W. de Gruyter, Berlin, 1934.
  • Schirokow P.A., Schirokow A.P.: Affine Differentialgeometrie, Teubner, Leipzig, 1962.
  • Simon U., Burau W.: Blaschkes Beitrage zur affinen Differentialgeometrie, Ibid., Vol.IV, 11-34 (1985).
  • Simon U.: Entwicklung der affinen Differentialgeometrie nach Blaschkes, Ibid., Vol.IV, 35-88 (1985).
  • Simon U.: Recent developments in affine differential geometry, Diff. Geom. and its Applications, Proc. Conf. Dubrovnik/Yugosl. 1988, 327-347 (1989).
  • Simon U., Liu H.L., Magid M. and Scharlach Ch.: Recent developments in affine differential geometry, In: Geometry and Topology of Submanifolds VIII, World ScientiŞc, Singapore, 1-15 and 293-408 (1966).
  • Su B.: Affine Differential Geometry, Science Press, Beijing, Gordon and Breach, New York, 1983.
  • Suhtaeva A.M.: On the equivalence of curves in Cnwith respect to the action of groups SL(n, C) and GL(n, C) , Dokl. Akad. Nauk of SSRUz, N6 ,11-13 (1987) .
  • Weyl H.: The Classical Groups, Princeton Univ. Press, Princeton, New Jersey, 1946.
  • Yasemin SA ˘GIRO ˘GLU, ¨Omer PEKS¸EN Department of Mathematics, Karadeniz Technical University, , Trabzon-TURKEY e-mail: sagiroglu.yasemin@gmail.com,peksen@ktu.edu.tr