Classification of genus-1 holomorphic Lefschetz pencils

Classification of genus-1 holomorphic Lefschetz pencils

In this paper, we classify relatively minimal genus-1 holomorphic Lefschetz pencils up to smooth isomorphism. We first show that such a pencil is isomorphic to either the pencil on P 1 × P 1 of bidegree (2, 2) or a blow-up of the pencil on P 2 of degree 3, provided that no fiber of a pencil contains an embedded sphere (note that one can easily classify genus-1 Lefschetz pencils with an embedded sphere in a fiber). We further determine the monodromy factorizations of these pencils and show that the isomorphism class of a blow-up of the pencil on P 2 of degree 3 does not depend on the choice of blown-up base points. We also show that the genus-1 Lefschetz pencils constructed by Korkmaz-Ozbagci (with nine base points) and Tanaka (with eight base points) are respectively isomorphic to the pencils on P 2 and P 1 × P 1 above, in particular these are both holomorphic.

___

  • [1] Auroux D. Fiber sums of genus 2 Lefschetz fibrations. Turkish Journal of Mathematics 2003; 2 7 (1): 1-10.
  • [2] Auroux D. A stable classification of Lefschetz fibrations. Geometry & Topology 2005; 9: 203-217. doi: 10.2140/gt.2005.9.203
  • [3] Endo H, Hasegawa I, Kamada S, Tanaka K. Charts, signatures, and stabilizations of Lefschetz fibrations. In: Interactions between low-dimensional topology and mapping class groups. Coventry, England: Geometry & Topology Monographs 19, 2015, pp. 237-267. doi: 10.2140/gtm.2015.19.237
  • [4] Endo H, Kamada S. Chart description for hyperelliptic Lefschetz fibrations and their stabilization. Topology and its Applications 2015; 196 (part B): 416–430. doi: 10.1016/j.topol.2015.05.015
  • [5] Endo H, Kamada S. Counting Dirac braid relators and hyperelliptic Lefschetz fibrations. Transactions of the London Mathematical Society 2017; 4 (1): 72-99. doi: 10.1112/tlm3.12002
  • [6] Friedman R, Qin Z. The smooth invariance of the Kodaira dimension of a complex surface. Mathematical Research Letters 1994; 1 (3): 369-376. doi: 10.4310/MRL.1994.v1.n3.a8
  • [7] Gervais S. A finite presentation of the mapping class group of a punctured surface. Topology. An International Journal of Mathematics 2001; 40 (4): 703-725. doi: 10.1016/S0040-9383(99)00079-8
  • [8] Griffiths P, Harris J. Principles of algebraic geometry. Hoboken, NJ, USA: Wiley-Interscience [John Wiley & Sons], Pure and Applied Mathematics, 1978.
  • [9] Hamada N. Upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus. Michigan Mathematical Journal 2014; 63 (2): 275-291. doi: 10.1307/mmj/1401973051
  • [10] Hamada N. Sections of the Matsumoto-Cadavid-Korkmaz Lefschetz fibration. arXiv e-prints, October 2016. arXiv:1610.08458.
  • [11] Hamada N, Hayano K. Topology of holomorphic Lefschetz pencils on the four-torus. Algebraic & Geometric Topology 2018; 18 (3): 1515-1572. doi: 10.2140/agt.2018.18.1515
  • [12] Iwase Z. Good torus fibrations with twin singular fibers. Japanese Journal of Mathematics 1984; 10 (2): 321-352. doi: 10.4099/math1924.10.321
  • [13] Kas A. On the deformation types of regular elliptic surfaces. In: Complex analysis and algebraic geometry. Tokyo, Japan: Iwanami Shoten, 1977, pp 107-111.
  • [14] Korkmaz M, Ozbagci B. On sections of elliptic fibrations. Michigan Mathematical Journal 2008; 56 (1): 77-87. doi: 10.1307/mmj/1213972398
  • [15] Matsumoto Y. Torus fibrations over the 2-sphere with the simplest singular fibers. Journal of the Mathematical Society of Japan 1985; 37 (4): 605-636. doi: 10.2969/jmsj/03740605
  • [16] Matsumoto Y. Diffeomorphism types of elliptic surfaces. Topology. An International Journal of Mathematics 1986; 25 (4): 549-563. doi: 10.1016/0040-9383(86)90031-5
  • [17] McDuff D. Immersed spheres in symplectic 4-manifolds. Université de Grenoble. Annales de l’Institut Fourier 1992; 42 (1-2): 369-392.
  • [18] Moishezon B. Complex surfaces and connected sums of complex projective planes. Berlin, Germany: SpringerVerlag, Lecture Notes in Mathematics, Vol. 603, 1977. With an appendix by R. Livne.
  • [19] Moishezon B, Robb A, Teicher M. On Galois covers of Hirzebruch surfaces. Mathematische Annalen 1996; 305 (3): 493-539. doi: 10.1007/BF01444235
  • [20] Moishezon B, Teicher M. Braid group technique in complex geometry. I. Line arrangements in CP 2 . In: Braids (Santa Cruz, CA, 1986). Providence, RI, USA: American Mathematical Society, Contemporary Mathematics. 78, 1988, pp. 425-555. doi: 10.1090/conm/078/975093
  • [21] Moishezon B, Teicher M. Braid group technique in complex geometry. II. From arrangements of lines and conics to cuspidal curves. In: Algebraic geometry (Chicago, IL, 1989). Berlin, Germany: Springer, Lecture Notes in Math., 1479, 1991, pp. 131-180. doi: 10.1007/BFb0086269
  • [22] Moishezon B, Teicher M. Braid group techniques in complex geometry. III. Projective degeneration of V3 . In: Classification of algebraic varieties (L’Aquila, 1992). Providence, RI, USA: American Mathematical Society, Contemporary Mathematics. 162, 1994, pp. 313-332. doi: 10.1090/conm/162/01540
  • [23] Moishezon B, Teicher M. Braid group techniques in complex geometry. IV. Braid monodromy of the branch curve S3 of V3 → CP 2 and application to π1(CP 2 − S3, ∗). In: Classification of algebraic varieties (L’Aquila, 1992). Providence, RI, USA: American Mathematical Society, Contemporary Mathematics. 162, 1994, pp. 333-358. doi: 10.1090/conm/162/01541
  • [24] Ohta H, Ono K. Symplectic fillings of the link of simple elliptic singularities. Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal] 2003; 565: 183-205. doi: 10.1515/crll.2003.100
  • [25] Ozbagci B. On the topology of fillings of contact 3-manifolds. In: Interactions between low-dimensional topology and mapping class groups. Coventry, England: Geometry & Topology Monographs 19, 2015, pp. 73-123. doi: 10.2140/gtm.2015.19.73
  • [26] Plamenevskaya O, Van Horn-Morris J. Planar open books, monodromy factorizations and symplectic fillings. Geometry & Topology 2010; 14 (4): 2077-2101. doi: 10.2140/gt.2010.14.2077
  • [27] Robb AS. The topology of branch curves of complete intersections. PhD, Columbia University, Ann Arbor, MI, USA, 1994.
  • [28] Siebert B, Tian G. On the holomorphicity of genus two Lefschetz fibrations. Annals of Mathematics. Second Series 2005; 161 (2): 959-1020. doi: 10.4007/annals.2005.161.959
  • [29] Smith I. Geometric monodromy and the hyperbolic disc. The Quarterly Journal of Mathematics 2001; 52 (2): 217-228. doi: 10.1093/qjmath/52.2.217
  • [30] Stipsicz AI. Indecomposability of certain Lefschetz fibrations. Proceedings of the American Mathematical Society 2001; 129 (5): 1499-1502. doi: 10.1090/S0002-9939-00-05681-1
  • [31] Tanaka S. On sections of hyperelliptic Lefschetz fibrations. Algebraic & Geometric Topology 2012; 12(4): 2259-2286. doi: 10.2140/agt.2012.12.2259
  • [32] Voisin C. Hodge theory and complex algebraic geometry. II. Cambridge, England: Cambridge University Press, Cambridge Studies in Advanced Mathematics, 77, 2003. Translated from the French by Leila Schneps. doi: 10.1017/CBO9780511615177