Extension of Montgomery identity via Taylor polynomial on time scales

Extension of Montgomery identity via Taylor polynomial on time scales

An extension in Montgomery identity with the help of Taylor’s formula on time scales is provided in the paper, which is used to establish Ostrowski type inequality, midpoint inequality and trapezoid type inequality on time scales in generalized forms. The weighted version of obtained Montgomery identity and respective Ostrowski inequality are also addressed at the end of the paper.

___

  • [1] Adeel M, Khan KA, Pečarić D, Pečarić J. Levinson-type inequalities via new Green functions and Montgomery identity. Open Mathematics 2020; 18 (1).
  • [2] Ahmad M, Awan KM, Hameed S, Khan KA, Nosheen A. Bivariate Montgomery identity for alpha diamond integrals. Advances in Difference Equations 2019; 314. doi: 10.1186/s13662-019-2254-6
  • [3] Akin E. Cauchy functions for dynamic equations on a measure chain. Journal of Mathematical Analysis and Applications 2002; 267: 97-115.
  • [4] Aljinović AA, Pečaríc J. On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula. Tamkang Journal of Mathematics 2005; 36(3): 199-218.
  • [5] Aljinović AA, Pečaríc J, Pribanić AP. Generalization of Steffensen’s inequality via the extension of Montgomery identity. Open Mathematics 2018; 16: 420-428. doi: 10.1515/math-2018-0039
  • [6] Bohner M, Matthews T. Ostrowski inequalities on time scales. Journal of Inequalities in Pure and Applied Mathematics 2008; 9: 6-8.
  • [7] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkhäuser, 2001.
  • [8] Butt SI, Fahad A, Naseer A, Pečaríc J. Generalized Steffensen’s inequality by Montgomery identity. Journal of Inequalities and Applicatios 2019; 199. doi: 10.1186/s13660-09-2147-y
  • [9] Butt SI, Khan KA, Pečaríc J. Popoviciu type inequalities via Green function and generalized Montgomery identity. Mathematical Inequalities and Applications 2015; 18 (4): 1519-1538.
  • [10] Butt SI, Pečaríc J. Weighted Popoviciu type inequalities via generalized Montgomery identity. Rad HAZU Matematičke Znanosti 2015; 19 (523): 69-89.
  • [11] Karpuz B. Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. Electronic Journal of Qualitative Theory of Differential Equations 2009; 34: 1-14.
  • [12] Khan J, Khan MA, Pečaríc J. On Jensen’s type inequalities via generalized majorization inequalities. Filomat 2018; 32 (16): 5719-5733.
  • [13] Khan MA, Khan J, Pečaríc J. Generalization of Jensen’s and Jensen-Steffensen’s inequalities by generalized majorization theorem. Journal of Mathematical Inequalities 2017; 11 (4): 1049-1074.
  • [14] Khan MA, Khan J, Pečaríc J. Generalizations of Sherman’s inequality by Montgromey idenity. Mongolian Mathematical Journal 2015; 19: 46-63.
  • [15] Khan MA, Khan J, Pečaríc J. Generalizations of Sherman’s inequality by Montgromey identity and Green function. Electronic Journal of Mathematical Analysis and Applications 2017; 5 (1): 1-16.
  • [16] Mehmood N, Agrwal RP, Butt SI, Pečaríc J. New Generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity. Journal of Inequalities and Applications 2017; 108.
  • [17] Mitrinovic DS, Pečaríc J, Fink AM. Inequalities Involving Functions and their Integrals and Derivatives. Dordrecht, Netherlands: Kluwer Academic Publishers, 1991.
  • [18] Khan KA, Niaz T, Pecaric D, Pecaric J. Refinement of Jensen’s inequality and estimation of f- and Renyi divergence via Montgomery identity. Journal of inequalities and Applications 2018; 318. doi: 10.1186/s13660-018-1902-9
  • [19] Pečarić J. On the Čebyšev Inequality. Scientific Bulletin of ”Politehnica” University of Timişoara 1980; 25 (39): 10-11.
  • [20] Pachpatte BG. On Čebyšev-Grüss type inequalities via Pečarić’s extension of the Montgomery identity. Journal of Inequalities in Pure and Applied Mathematics 2006; 7 (1).
  • [21] Rashid S, Hammouch Z, Kalsoom H, Ashraf R, Chu YM. New investifation on the generalized K-fractional integral operators. Frontier in Physics 2020; 8: 25. doi: 10.3389/fphy2020.00025
  • [22] Rashid S, Hammouch Z, Baleanu D, Chu YM. New generalizations in the sense of the weighted non-singular fractional integral operator. Fractals 2020. doi: 10.1142/S0218348X20400034
  • [23] Rashid S, Hammouch Z, Jarad F, Chu YM. New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function. Fractals 2020. doi: 10.1142/S0218348X20400277
  • [24] Rashid S, Kalsoom H, Hammouch Z, Ashraf R, Baleanu D et al. New multi parametrized estimates having p-th order differentiablity in fractional calculus for predominating h-convex functions in Hilbert space. Symmetry 2020; 12 (2): 222. doi: 10.3390/sym12020222
  • [25] Sarikaya MZ, Aktan N, Yildirim H. On weighted C̆ebys̆ev-Grüss inequalities on time scales. Journal of Mathematical Inequalities 2008; 2 (2): 185-195.