Linear mappings satisfying some recursive sequences
Linear mappings satisfying some recursive sequences
Let A be a unital, complex normed ∗-algebra with the identity element e such that the set of all algebraic elements of A is norm dense in the set of all self-adjoint elements of A and let {Dn} ∞n=0 and {∆n} ∞n=0 be sequences of continuous linear mappings on A satisfying Dn+1(p) = ∑n k=0 Dn−k(p)Dk(p), ∆n+1(p) = ∑n k=0 ∆n−k(p)Dk(p), for all projections p of A and all nonnegative integers n. Moreover, suppose that D0(p) = D0(p) 2 holds for all projections p of A. Then ∆n = Cn 2 ( RD0(e)∆0 + L∆0(e)D0 ) for all n ∈ N, where Cn denotes the nth Catalan number and RD0(e)(a) = aD0(e) and L∆0(e)(a) = ∆0(e)a for all a ∈ A. Using this result, we present a characterization of left τ -centralizers satisfying a certain recursive relation. In addition, a characterization of generalized higher derivations is presented. Moreover, we show that higher derivations, prime higher derivations, left higher derivations, and σ -derivations are zero under certain conditions.
___
- [1] Ali S, Haetinger C. Jordan τ -centralizers in rings and some applications. Boletim da Sociedade Paranaense de Matemática 2008; 26 (1): 71-80.
- [2] Aigner M. Combinatorial Theory. NY, USA: Springer-Verlag, 1979.
- [3] Albas E. On τ -centralizers of semiprime rings. Siberian Mathematical Journal 2007; 48: 191-196. doi: 10.1007/s11202-007-0021-5
- [4] Brešar M. Characterizations of derivations on some normed algebras with involution. Journal of Algebra 1992; 152: 454-462. doi: 10.1016/0021-8693(92)90043-L
- [5] Hosseini A. Some conditions under which left derivations are zero. Filomat 2017; 31 (13): 3965-3974. doi: 10.2298/FIL1713965H
- [6] Hosseini A, Hassani M, Niknam A, Hejazian S. Some results on σ -derivations. Annals of Functional Analysis 2011; 2: 75-84.
- [7] Jung YS. On the stability of higher left derivations. Indian Journal of Pure and Applied Mathematics 2016; 47 (3): 523-533. doi: 10.1007/s13226-016-0201-8
- [8] Kaplansky I. Projections in Banach algebras. Annals of Mathematics 1951; 53 (2): 235-249. doi: 10.2307/1969540
- [9] Miller JB. Analytic structure and higher derivations on commutative Banach algebras. Aequationes Mathematicae 1979; 9: 171-183. doi: 10.1007/BF01838197
- [10] Mirzavaziri M. Prime higher derivations on algebras. Bulletin of the Iranian Mathematical Society 2010; 36: 201-210.
- [11] Murphy GJ. C ∗ -Algebras and Operator Theory. Boston, MA, USA: Boston Academic Press, 1990.
- [12] Stanley RP. Enumerative Combinatorics. Vol. 1. Cambridge, UK: Cambridge University Press, 1997.
- [13] Stanley RP. Enumerative Combinatorics. Vol. 2. Cambridge, UK: Cambridge University Press, 1999.
- [14] Takesaki M. Theory of Operator Algebras. New York, NY, USA: Springer-Verlag, 2001.
- [15] Wei F, Xiao Z. Generalized Jordan derivations on semiprime rings and its applications in range inclusion problems. Mediterranean Journal of Mathematics 2011; 8: 271-291. doi: 10.1007/s00009-010-0081