Covers and envelopes with respect to a semidualizing module

Let R be a commutative ring and C be a semidualizing R-module. For a given class of R-modules Q, we define a class QC by M \in QC \Leftrightarrow HomR(C,M) \in Q. We prove that if Q \subseteq (R) is a Kaplansky class and closed under direct sums, then QC\bot is special preenveloping. As corollaries, we can show that pCn \bot and fCn \bot are both special preenveloping. Finally, we show that ICn is covering, ICn \bot is enveloping and special preenveloping provided R is Noetherian.

Covers and envelopes with respect to a semidualizing module

Let R be a commutative ring and C be a semidualizing R-module. For a given class of R-modules Q, we define a class QC by M \in QC \Leftrightarrow HomR(C,M) \in Q. We prove that if Q \subseteq (R) is a Kaplansky class and closed under direct sums, then QC\bot is special preenveloping. As corollaries, we can show that pCn \bot and fCn \bot are both special preenveloping. Finally, we show that ICn is covering, ICn \bot is enveloping and special preenveloping provided R is Noetherian.

___

  • Aldrich, S. T., Enochs, E. E., Jenda, O. M. G., Oyonarte, L.: Envelopes and covers by modules of Şnite injective and projective dimensions. J. Algebra. 242, 447–459 (2001).
  • Anderson, F. W., Fuller, K. R.: Rings and categories of modules. Nwe York. Springer 1992.
  • Avramov, L. L., Foxby, H. B.: Ring homomorphisms and Şnite Gorenstein dimension. Proc. London. Math. Soc. (2), 241–270 (1997).
  • Christensen, L. W.: Gorenstein dimensions. Lecture Notes in Math. Vol. 1747. Berlin. Springer 2000.
  • Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Amer. Math. Soc. 353(5), –1883 (2001).
  • Eklof, P. C.: Homological algebra and set theory. Trans. Amer. Math. Soc. 227, 207–225 (1977).
  • Enochs, E. E., Holm, H.: Cotorsion pairs associated with Auslander categories. Israel J. Math. 174, 253–268 (2009).
  • Enochs, E. E., L´opez-Ramos, J. A.: Kaplansky classes. Rend. Sem. Mat. Univ. Padova. 107, 67–79 (2002).
  • Enochs, E. E., Jenda, O. M. G.: Relative homological algebra. In: de Gruyter Expositions in Math. Vol. 30. Berlin. Walter de Gruyter 2000.
  • Enochs, E. E., Jenda, O. M. G., Xu, J. Z.: Foxby duality and Gorenstein injective and projective modules. Trans. Amer. Math. Soc. 348(8), 3223–3234 (1996).
  • Foxby, H. B.: Gorenstein modules and related modules. Math. Scand. 31, 267–284 (1973).
  • G¨obel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of modules. In: de Gruyter Expositions in Math. Vol. 41. Berlin-New York. Walter de Gruyter 2006.
  • Golod, E. S.: G-dimension and generalized perfect ideals. Trudy Mat. Inst. Steklov. 165, 62–66 (1986). Algebraic geometry and its applications.
  • Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra. 189(1), 167–193 (2004).
  • Holm, H., Jİrgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra. 205, 423–445 (2006).
  • Holm, H., Jİrgensen, P.: Covers, precovers, and purity. Illinois Journal of Math. 52(2), 691–703 (2008).
  • Holm, H., Jİrgensen, P.: Cotorsion pairs induced by duality pairs. J. Commut. Algebra. 1(4), 621–633 (2009).
  • Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47(4), 781–808 (2007).
  • Lam, T. Y.: Lectures on modules and rings. GTM 189, New York. Springer-Verlag 1999.
  • Rada, J., Saori, M.: Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm. Algebra. 26(3), –912 (1998).
  • Rotman, J. J.: An introduction to homological algebra. New York. Academic Press 1979.
  • Sather-Wagastaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semmidu- alizing modules. Math. Z. 264(3), 571–600 (2010).
  • Sather-Wagastaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theor.(to appear) Sather-Wagastaff, S., Yassemi, S.: Modules of Şnite homological dimension with respect to a semidualizing module, Arch. Math. 93(2), 111–121 (2009).
  • Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106(1), 5–22 (2010).
  • Vasconcelos, W. V.: Divisor theory in module categories. North-Holland, Amsterdam (1974). North-Hol-land
  • Mathematics Studies. Vol. 14, Notas de Matemtica No. 53. [Notes on Mathematics, No. 53]. Weibel, C. A.: An introduction to homological algebra. Cambridge Stud. Adv. Math. Vol. 38. Cambridge. Cambridge University Press 1994.
  • White, D.: Gorenstein projective dimension with respect to a semidualizing modules. J. Commutative Algebra. (1), 111–137 (2010).
  • Xu, J. Z.: Flat covers of modules. In: Lecture Notes in Math. Vol. 1634. Berlin. Springer 1996.
  • Xiaoguang YAN, Xiaosheng ZHU Department of Mathematics, Nanjing University, Nanjing 210093, P. R. CHINA e-mail: yanxg1109@gmail.com, zhuxs@nju.edu.cn