Analysis of a differential equation model of HIV infection of CD4+ T-cells with saturated reverse function

In this paper, an ordinary differential equation model of HIV infection of CD4+ T-cells with saturated reverse function is studied. We prove that if the basic reproduction number R0

Analysis of a differential equation model of HIV infection of CD4+ T-cells with saturated reverse function

In this paper, an ordinary differential equation model of HIV infection of CD4+ T-cells with saturated reverse function is studied. We prove that if the basic reproduction number R0

___

  • Brauer, F.: Backward bifurcations in simple vaccination models, J. Math. Anal. Appl. 298, 418–431 (2004).
  • De Boer, R.J., Perelson, A.S.: Target cell limited and immune control models of HIV infection: A comparison, J. Theoret. Biol. 190, 201–214 (1998).
  • Essunger, P., Perelson, A.S.: Modeling HIV infection of CD4 T-cell subpopulations, J. Theor. Biol. 170, 367–391 (1994).
  • Gantmacher, F.R.: The Theory of Matrices, Chelsea Publ. Co., New York, 1959.
  • Hirsch, M.W.: Systems of differential equations which are competitive or cooperative, IV, SIAM J. Math. Anal. 21, –1234 (1990).
  • Kepler, T.B., Perelson, A.S.: Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation, Immunol. Today 14, 412–415 (1993).
  • Kirschner D.: Using mathematics to understand HIV immune dynamics, AMS. Notices, 43, 191–202 (1996).
  • Levy, J.A.: HIV and the pathogenesis of AIDS, Washington DC: ASM Press, 1994.
  • Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol. 23, 187–204 (1986).
  • Martin R.H., Jr.: Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl. , 432–454 (1974).
  • McLean, A.R., Rosado, M.M., Agenes, F., Vasconcellos, R., Freitas, A.A.: Resource competition as a mechanism for B cell homeostasis, Proc. Natl. Acad. Sci. USA 94, 5792–5797 (1997).
  • Muldowney, J.S.: Dichotomies and asymptotic behaviour for linear differential systems, Trans. Amer. Math. Soc. , 465–584 (1984).
  • Muldowney, J. S.: Compound matrices and ordinary differential equations, Rocky Mountain J. Math. 20, 857–872 (1990).
  • Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theor. Biol. 184, 203–217 (1997).
  • Ouifki, R., Witten, G.: A model of HIV-1 infection with HAART therapy and intracellular delay, Discrete Cont. Dyn-B 8, 229–240 (2007).
  • Percus, J.K., Percus, O.E., Perelson, A.S.: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination, Proc. Natl. Acad. Sci. USA 90, 1691–1695 (1993).
  • Perelson, A.S., Essunger, P., Cao, Y.: Decay characteristics of HIV-1-infected compartments during combination therapy, Nature 387, 188–191 (1997).
  • Perelson, A.S., Nelson P.W.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41, 3–44 (1999).
  • Smith, H.L.: Monotone dynamical systems: An Introduction to the theory of competitive and cooperative systems, Trans. Amer. Math. Soc. vol. 41, 1995.
  • Smith, H.L.: Systems of ordinary differential equations which generate an order preserving flow, SIAM Rev. 30, –98 (1998).
  • Smith, H.L., Zhu, H.R.: Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations 110, 143–156 (1994).
  • Song, X.Y. and Neumann A.U.: Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl. (1), 281–297 (2007).
  • Srivastava P.K., Banerjee, M., Chandra, P.: Modeling the drug therapy for HIV infection, J. Biol. Syst. 17, 213–223 (2009).
  • Srivastava, P.K., Chandra, P.: Modeling the dynamics of HIV and CD4+T cells during primary infection, Nonlinear Anal. RWA 11, 612–618 (2010).
  • Thieme, H.R.: Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM J. Math. Anal. 24, 407–435 (1993).
  • Zack, J.A., Arrigo, S.J., Weitsman, S.R., Go, A.S., Haislip A., Chen, I.S.: HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile latent viral structure, Cell 61, 213–222 (1990).
  • Zack, J.A., Haislip, A.M., Krogstad, P., Chen, I.S.: Incompletely reverse-transcribed human immunodeŞciency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral cycle, J. Virol. 66, 1717–1725 (1992).
  • Zandrea Ambrose, John G. Julias, Paul L. Boyer, Vineet N. KewalRamani, Stephen H. Hughes, The level of reverse transcriptase (RT) in human immunodeŞciency virus type 1 particles affects susceptibility to nonnucleoside RT inhibitors but not to Lamivudine, J. Virol. 80, 2578–2581 (2006).
  • Zhen, J., Haque M., Liu Q.X.: Pulse vaccination in the periodic infection rate SIR epidemic model, International Journal of Biomathematics 1, 409–432 (2008).
  • Zhou, X.Y., Song X.Y., Shi, X.Y.: A differential equation model of HIV infection of CD4+T-cells with cure rate, J. Math. Anal. Appl. 34, 1342–1355 (2008). Xiangyun SHI
  • College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, Henan-P.R. CHINA Gang LI
  • School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, Henan-P.R. CHINA Xueyong ZHOU
  • College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, Henan-P.R. CHINA e-mail: xueyongzhou@126.com Xinyu SONG
  • College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, Henan-P.R. CHINA