Cartan calculus on the quantum space $mathcal R^3_q$

Cartan calculus on the quantum space $mathcal R^3_q$

To give a Cartan calculus on the extended quantum 3d space, the noncommutative differential calculus on the extended quantum 3d space is extended by introducing inner derivations and Lie derivatives.

___

  • [1] Chryssomalakos, C., Schupp, P. and Zumino, B.: Induced extended calculus on the quantum plane, hep-th /9401141.
  • [2] Çelik, S.: Cartan Calculi on The Quantum Superplane, J. Math. Phys. 47 (8),Art. No: 083501 (2006).
  • [3] Çelik, S. A. and Yasar, E.: Differential Geometry of the Quantum 3-Dimensional Space,Czech. J. Phys. 56, 229-236 (2006).
  • [4] Dobrev, V. K.: Dualitiy for the Matrix Quantum Group, J. Math. Phys. 33, 3419-3430 (1992).
  • [5] Manin, Yu I.: Quantum groups and noncommutative geometry, Montreal Univ. Preprint, (1988).
  • [6] Schupp, P.: Cartan calculus: Differential geometry for quantum groups, hep-th/9408170.
  • [7] Schupp, P., Watts, P. and Zumino, B.: Differential Geometry on Linear Quantum Groups, Lett. Math. Phys. 25, 139-147 (1992).
  • [8] Schupp, P., Watts, P. and Zumino, B.: Cartan calculus on quantum Lie algebras, hep-th/9312073.
  • [9] Sudbery, A.: Non-Commuting Coordinates and Differential Operators, Proc. Workshop on Quantum Groups, Argogne, eds. Curtright T, Fairlie D and Zachos C, 33-51 (1990).
  • [10] Wess, J. and Zumino, B.: Covariant Differential Calculus on the Quantum Hyperplane, Nucl. Phys. B 18, 302-312 (1990).
  • [11] Woronowicz, S. L.: Compact Matrix Pseudogroups, Commun. Math. Phys. 111, 613-665 (1987).
  • [12] Woronowicz, S. L.: Differential Calculus on Compact Matrix Pseudogroups, Commun. Math. Phys. 122, 125-170 (1989).