Balanced pair algorithm for a class of cubic substitutions

In this article we introduce the balanced pair algorithm associated with 2 unimodular Pisot substitutions having the same incidence matrix. We are interested in beta-substitution related to the polynomial x3 - ax2 - bx-1 for a \geq b \geq 1. Applying the balanced pair algorithm to these substitutions, we obtain a general formula for the associated intersection substitution.

Balanced pair algorithm for a class of cubic substitutions

In this article we introduce the balanced pair algorithm associated with 2 unimodular Pisot substitutions having the same incidence matrix. We are interested in beta-substitution related to the polynomial x3 - ax2 - bx-1 for a \geq b \geq 1. Applying the balanced pair algorithm to these substitutions, we obtain a general formula for the associated intersection substitution.

___

  • [1] Akiyama S, Loridant B. Boundary parametrization of self-affine tiles. Journal of Mathematics Society of Japan 2011; 63: 525–579.
  • [2] Arnoux P, Ito S. Pisot substitutions and Rauzy fractals. Bull Belg Math Soc Simon Stevin 2001; 8: 181–207.
  • [3] Ayadi K, Taktak F. On the continued fraction expansion of some hyperquadratic functions. Turk J Math 2014; 38: 191–202.
  • [4] Barge M, Diamond B. Coincidence for substitutions of Pisot type. Bull Soc Math France 2002; 130: 619–626.
  • [5] Barge M, Kwapisz J. Geometric theory of unimodular Pisot substitutions. Am J Math 2006; 128: 1219–1282.
  • [6] Berth´e V, Rigo M, editors. Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, Book 135. Cambridge, UK: Cambridge University Press, 2010.
  • [7] Canterini V, Siegel A. Geometric representation of substitutions of Pisot type. T Am Math Soc 2001; 353: 5121– 5144.
  • [8] Ei H, Ito S, Rao H. Atomic surfaces, tiling and coincidences II, reducible case. Ann Inst Fourier Grenoble 2006; 56: 2285–2313.
  • [9] Holton C, Zamboni L. Geometric realization of substitutions. Bull Soc Math France 1998; 126: 149–179
  • [10] Ito S, Kimura M. On the Rauzy fractal. Japan J Ind Appl Math 1991; 8: 461–486.
  • [11] Lee JY, Moody RV, Solomyak B. Diffraction and multi-dimensional substitution systems. Annales Henri Poincar´e 2002; 3: 1002–1018.
  • [12] Livshits AN. On the spectra of adic transformations of Markov compacta. Russian Math Surveys 1987; 42: 222–223.
  • [13] Loridant B, Messaoudi A, Surer P, Thuswaldner JM. Tilings induced by a class of cubic Rauzy fractals. Theor Comput Sci 2013; 477: 6–31.
  • [14] Messaoudi A. Propri´et´es arithm´etiques et dynamiques du fractal de Rauzy. J Th´eor Nombres Bordeaux 1998; 10: 135–162 (in French).
  • [15] Pytheas Fogg N. Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics, Vol. 1794. Berlin, Germany: Springer, 2002.
  • [16] Rauzy G. Nombres alg´ebriques et substitutions. Bull Soc Math France 1982; 110: 147–178 (in French).
  • [17] Sellami T. Geometry of the common dynamics of Pisot substitutions with the same incidence matrix. C R Math Acd Sci Paris 2010; 348: 1005–1008.
  • [18] Sellami T. Common dynamics of two Pisot substitutions with the same incidence matrix. Publ Math Debrecen 2012; 81: 41–63.
  • [19] Siegel A, Thuswaldner JM. Topological Properties of Rauzy Fractal. Marseille, France: M´emoires de la SMF, 2009.
  • [20] Sing B, Sirvent VF. Geometry of the common dynamics of flipped Pisot substitutions. Monatshefte f¨ur Mathematik 2008; 155: 431–448.
  • [21] Sirvent VF, Solomyak B. Pure discrete spectrum for one dimensional substitution systems of Pisot type. Can Math Bulletin 2002; 45: 697–710.
  • [22] Sirvent VF, Wang Y. Self-affine tilings via substitution dynamical systems and Rauzy fractals. Pac J Math 2002; 206: 465–485.
  • [23] Solomyak B. On the spectral theory of adic transformations. Advances in Soviet Mathematics 1992; 9: 217–230.
  • [24] Thuswaldner JM. Unimodular Pisot substitutions and their associated tiles. J Th´eor Nombres Bordeaux 2006; 18: 487–536.