An application of semigroup theory to the coagulation-fragmentation models

An application of semigroup theory to the coagulation-fragmentation models

We present the existence and uniqueness of strong solutions for the continuous coagulation-fragmentation equation with singular fragmentation and essentially bounded coagulation kernel using semigroup theory of operators. Initially, we reformulate the coupled coagulation-fragmentation problem into the semilinear abstract Cauchy problem (ACP) and consider it as the nonlinear perturbation of the linear fragmentation operator. The existence of the substochastic semigroup is proved for the pure fragmentation equation. Using the substochastic semigroup and some related results for the pure fragmentation equation, we prove the existence of global nonnegative, strong solution for the coagulation-fragmentation equation

___

  • [1] Bałdyga J, Orciuch W, Makowski, Ł, Malik K, Özcan-Taşkin Gül, Eagles W and Padron G. Dispersion of nanoparticle clusters in a rotor-stator mixer. Industrial & engineering chemistry research 2008; 47 (10): 3652-63. doi: 10.1021/ie070899u
  • [2] Banasiak J, Arlotti L. Perturbations of positive semigroups with applications 2006; Springer Science & Business Media. doi: 10.1007/1-84628-153-9
  • [3] Banasiak J, Lamb W. Global strict solutions to continuous coagulation–fragmentation equations with strong fragmentation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 2011; 141 (3): 465-80. doi: 10.1017/S0308210509001255
  • [4] Chakraborty J, Kumar J, Singh M, Mahoney A, Ramkrishna D. Inverse problems in population balances. Determination of aggregation kernel by weighted residuals. Industrial & Engineering Chemistry Research 2015; 54 (42): 10530-8. doi: 10.1021/acs.iecr.5b01368
  • [5] Das A, Bhoi S, Sarkar D, Kumar J. Sonofragmentation of Rectangular Plate-like Crystals: Bivariate Population Balance Modeling and Experimental Validation. Crystal Growth & Design 2020; 20 (8): 5424-34. doi: 10.1021/acs.cgd.0c00644
  • [6] Das N, Saha J, Kumar J. An application of semigroup theory to the pure fragmentation equation. The Journal of Analysis 2020; 28 (1): 95-106. doi: 10.1007/s41478-017-0045-6
  • [7] Dechet MA, Demina A, Roemling L, Bonilla JS, Lanyi FJ, Schubert DW, Bueck A, Peukert W, Schmidt J. Development of poly (L-lactide)(PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. Additive Manufacturing 2020; 32: 100966. doi: 10.1016/j.addma.2019.100966
  • [8] Diemer Jr RB, Spahr DE, Olson JH, Magan RV. Interpretation of size reduction data via moment models. Powder Technology 2005; 156 (2-3): 83-94. doi: 10.1016/j.powtec.2005.04.015
  • [9] Ghosh D, Kumar J. Existence of mass conserving solution for the coagulation–fragmentation equation with singular kernel. Japan Journal of Industrial and Applied Mathematics 2018; 35 (3): 1283-302. doi: 10.1007/s13160-018-0327- 7
  • [10] Ghosh D, Kumar J. Uniqueness of solutions to the coagulation–fragmentation equation with singular kernel. Japan Journal of Industrial and Applied Mathematics 2020; 37 (2): 487-505. doi: 10.1007/s13160-020-00412-4
  • [11] Gokhale YP, Kumar R, Kumar J, Hintz W, Warnecke G, Tomas J. Disintegration process of surface stabilized sol–gel TiO2 nanoparticles by population balances. Chemical Engineering Science 2009; 64 (24): 5302-7. doi: 10.1016/j.ces.2009.09.015
  • [12] Huillet T. Statistics of aggregates. Journal of mathematical chemistry 1998; 2 4(1): 187-221. doi: 10.1023/A:1019126804305
  • [13] Kaur G, Singh R, Singh M, Kumar J, Matsoukas T. Analytical approach for solving population balances: A homotopy perturbation method. Journal of Physics A: Mathematical and Theoretical 2019; 52 (38): 385201. doi: 10.1088/1751-8121/ab2cf5
  • [14] Kind M. Product engineering. Chemical Engineering and Processing: Process Intensification, 38 (4): 405-410. doi: 10.1016/S0255-2701(99)00038-0
  • [15] Maas SG, Schaldach G, Walzel P, Urbanetz NA. Tailoring dry powder inhaler performance by modifyingcarrier surface topography by spray drying. Atomization and Sprays 2010; 2 0(9). doi: 10.1615/AtomizSpr.v20.i9.20
  • [16] McGrady ED, Ziff RM. ‘‘Shattering’’transition in fragmentation. Physical review letters 1987; 58 (9): 892. doi: 10.1103/PhysRevLett.58.892
  • [17] McLaughlin DJ, Lamb W, McBride AC. An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM Journal on Mathematical Analysis 1997; 28 (5): 1173-90. doi: 10.1137/S0036141095291713
  • [18] Paul J, Kumar J. An existence-uniqueness result for the pure binary collisional breakage equation. Mathematical Methods in the Applied Sciences 2018; 41 (7): 2715-32. doi: 10.1002/mma.4775
  • [19] Sabelfeld KK, Brandt O, Kaganer VM. Stochastic model for the fluctuation-limited reaction–diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations. Journal of Mathematical Chemistry 2015; 53 (2):651-69. doi: 10.1007/s10910-014-0446-6
  • [20] Singh R, Saha J, Kumar J. Adomian decomposition method for solving fragmentation and aggregation population balance equations. Journal of Applied Mathematics and Computing 2015; 48 (1): 265-92. doi: 10.1007/s12190-014- 0802-5
  • [21] Sommer M, Stenger F, Peukert W, Wagner NJ. Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chemical Engineering Science 2006; 61 (1): 135-48. doi: 10.1016/j.ces.2004.12.057
  • [22] Stewart IW, Meister E. A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels. Mathematical Methods in the Applied Sciences 1989; 1 1(5): 627-48. doi: 10.1002/mma.1670110505
  • [23] Terrazas-Velarde K, Peglow M, Tsotsas E. Stochastic simulation of agglomerate formation in fluidized bed spray drying: A micro-scale approach. Chemical Engineering Science 2009; 64 (11): 2631-43. doi: 10.1016/j.ces.2009.02.041
  • [24] Vigil RD, Ziff RM. On the stability of coagulation—fragmentation population balances. Journal of Colloid and Interface Science 1989; 133 (1): 257-64. doi: 10.1016/0021-9797(89)90300-7
  • [25] Xu GP, Wang JS. Development and application of moment method on nanoparticles evolution due to coagulation and deposition. Journal of Hydrodynamics 2019; 31 (5): 1011-20. doi: 10.1007/s42241-019-0059-4