Some qualitative results for functional delay dynamic equations on time scales

Some qualitative results for functional delay dynamic equations on time scales

Let T be a nonempty, closed, and arbitrary set of real numbers, namely a time scale, and consider the following delay dynamical equation x ∆ (t) = a (t) x (t) + f (t, x (ϑ (t))), t ∈ T, where ϑ stands for the abstract delay function. The main goal of this study is three-fold: obtaining the existence of an equi-bounded solution, proving the asymptotic stability of the zero solution, and showing the existence of a periodic solution based on new periodicity concept on time scales for the given delayed equation under certain conditions. In our analysis, we propose an alternative variation of parameters formulation by using an auxiliary function to invert a mapping for the utilization of fixed point theory.

___

  • [1] Adıvar M, Raffoul YN. Stability and periodicity in dynamic delay equations. Computers & Mathematics with Applications 2009; 58 (2): 264-272. doi: 10.1016/j.camwa.2009.03.065
  • [2] Adıvar M, Raffoul YN. Shift operators and stability in delayed dynamic equations. Rendiconti del Seminario Matematico Università e Politecnico di Torino 2010; 68 (4): 369-396.
  • [3] Adıvar M. A new periodicity concept for time scales. Mathematica Slovaca 2013; 63 (4): 817-828. doi:10.2478/s12175- 013-0127-0
  • [4] Adıvar M, Koyuncuoğlu HC, Raffoul YN. Existence of periodic solutions in shifts δ± for neutral nonlinear dynamic systems. Applied Mathematics and Computation 2014; 242: 328-339. doi: 10.1016/j.amc.2014.05.062
  • [5] Adıvar M, Raffoul YN. Stability, Periodicity, and Boundedness in Functional Dynamical Systems on Time Scales. Switzerland: Springer International Publishing, Springer Nature, 2020.
  • [6] Akın E, Raffoul YN. Boundedness in functional dynamic equations on time scales. Advances in Difference Equations 2006; 1-18. doi: 10.1155/ADE/2006/79689
  • [7] Anderson DR, Krueger RJ, Peterson AC. Delay dynamic equations with stability. Advances in Difference Equations 2006; 1-19. doi: 10.1155/ADE/2006/94051
  • [8] Bohner M, Peterson AC. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkhäuser, 2001.
  • [9] Bohner M, Peterson AC. Advances in Dynamic Equations on Time Scales. Boston, MA, USA: Birkhäuser, 2003.
  • [10] Clark CW. A delayed-recruitment model of population dynamics, with an application to baleen whale populations. Journal of Mathematical Biology 1976; 3: 381-391. doi:10.1007/BF00275067
  • [11] Çetin E, Topal FS. Periodic solutions in shifts δ± for a nonlinear dynamic equation on time scales. Abstract and Applied Analysis 2012; 1-17. doi: 10.1155/2012/707319
  • [12] Çetin E. Positive periodic solutions in shifts δ± for a nonlinear first-order functional dynamic equation on time scales. Advances in Difference Equations 2014; 1-13. doi: 10.1186/1687-1847-2014-76
  • [13] Diblik J, Vitovec J. Bounded solutions of delay dynamic equations on time scales. Advances in Difference Equations 2012; 1-9. doi: 10.1186/1687-1847-2012-183
  • [14] Fan M, Xia Z, Zhu H. Asymptotic stability of delay differential equations via fixed point theory and applications. Canadian Applied Mathematics Quarterly 2010; 18 (4): 361-380.
  • [15] Gopalsamy K, Sariyasa S. Time delays and stimulus dependent pattern formation in periodic environments in isolated neurons II. Dynamics of Continuous, Discrete & Impulsive Systems. Series B. Applications & Algorithms 2002; 9: 39-58.
  • [16] Hoffacker C, Tisdell CC. Stability and instability for dynamic equations on time scales. Computers & Mathematics with Applications 2005; 49 (9-10): 1327-1334. doi: 10.1016/j.camwa.2005.01.016
  • [17] Hu M, Wang L. Multiple periodic solutions in shifts δ± for an impulsive dynamic equation on time scales. Advances in Difference Equations 2014; 1-15. doi: 10.1186/1687-1847-2014-152
  • [18] Islam M, Yankson E. Boundedness and stability in nonlinear delay difference equations employing fixed point theory. Electronic Journal of Qualitative Theory of Differential Equations 2005; 26: 1-18. doi: 10.14232/ejqtde.2005.1.26
  • [19] Kaufmann ER, Raffoul YN. Periodic solutions for a neutral nonlinear dynamical equation on a time scale. Journal of Mathematical Analysis and Applications 2006; 319 (1): 315-325. doi: 10.1016/j.jmaa.2006.01.063
  • [20] Liu J. A First Course in the Qualitative Theory of Differential Equations. NJ, USA: Pearson Education, 2003.
  • [21] Peterson AC, Tisdell CC. Boundedness and uniqueness of solutions to dynamic equations on time scales. Journal of Difference Equations and Applications 2004; 10 (13-15): 1295-1306. doi: 10.1080/10236190410001652793
  • [22] Raffoul YN. Stability in functional difference equations with applications to infinite delay Volterra difference equations. Bulletin of the Korean Mathematical Society 2018; 55 (6): 1921-1930. doi: 10.4134/BKMS.B180054
  • [23] Raffoul YN. Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory. Cubo, A Mathematical Journal 2019; 21 (3): 39-61. doi: 10.4067/S0719- 06462019000300039
  • [24] Raffoul YN. Nonlinear delay differential equations arising from population models. Advances in Dynamical Systems and Applications 2019; 14 (1): 67-81. doi: 10.37622/ADSA/14.1.2019.67-81
  • [25] Wu H, Zhou Z. Stability for first order delay dynamic equations on time scales. Computers & Mathematics with Applications 2007; 53 (12): 1820-1831. doi: 10.1016/j.camwa.2006.09.011
  • [26] Zhang J, Fan M. Boundedness and stability of semi-linear dynamic equations on time scales. Progress in Qualitative Analysis of Functional Equations 2012; 45-56.
  • [27] Zhang B. Contraction mapping and stability in a delay-differential equation. Proceedings of Dynamic Systems and Applications 2004; 4: 183-190.
  • [28] Zhang B. Fixed points and stability in differential equations with variable delays. Nonlinear Analysis: Theory, Methods & Applications 2005; 63 (5-7): 233-242. doi: 10.1016/j.na.2005.02.081