The Two-Type Estimates for The Boundedness of Generalized Fractional Maximal Operator on the Generalized Weighted Local Morrey Spaces
The Two-Type Estimates for The Boundedness of Generalized Fractional Maximal Operator on the Generalized Weighted Local Morrey Spaces
In this paper, we study two-type estimates which are the Spanne and Adams type estimates for the continuity properties of the generalized fractional maximal operator $M_{rho}$ on the generalized weighted local Morrey spaces $M^{{x_0}}_{p,varphi}(w^{p})$ and generalized weighted Morrey spaces $M_{p,varphi^{frac{1}{p}}}(w)$, including weak estimates. We prove the Spanne type boundedness of the generalized fractional maximal operator $M_{rho}$ from generalized weighted local Morrey spaces $M^{{x_0}}_{p,varphi_{1}}(w^{p})$ to the weighted weak space $WM^{{x_0}}_{q,varphi_2}(w^{q})$ for $1leq p< q
___
- [1] Adams, D.R., A note on Riesz potentials, Duke Math., 42(4)(1975), 765-778. 1
- [2] Burenkov, V., Guliyev, V.S., Necessary and sufficient conditions for the boundedness of the Riesz operator in local Morrey-type spaces, Potential Anal., 30(3)(2009), 211-249. 1
- [3] Burenkov, V., Guliyev, H.V., Guliyev, V.S., Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces, J. Comput. Appl. Math., 208(1)(2007), 280-301. 1
- [4] Cafarelli, L., Elliptic second order equations, Rend. Sem. Mat. Fis. Milano, 58(1998), 253-284 (1990), DOI 10.1007/BF02925245. 1
- [5] Carro, M., Pick, L., Soria, J., Stepanov, V.D., On embeddings between classical Lorentz spaces, Math. Inequal. Appl., 4(3)(2001), 397-428. 2
- [6] Coifman, R.R., Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Tamkang J. Math., Studia Math., 51(1974), 241-250. 1
- [7] Eridani, A., On the boundedness of a generalized fractional integral on generalized Morrey spaces, Tamkang J. Math., 33(4)(2002), 335-340. 1
- [8] Eridani, A., Gunawan, H., Nakai, E., Sawano, Y., Characterizations for the generalized fractional integral operators on Morrey spaces, Math. Inequal. Appl., 17(2)(2014), 761-777. 1, 3
- [9] Eridani, A., Gunawan, H., Nakai, E., On generalized fractional integral operators, Sci. Math. Jpn., 60(3)(2004), 539-550. 1
- [10] Gadjiev, A.D., On generalized potential-type integral operators, Dedicated to Roman Taberski on the occasion of his 70th birthday. Funct. Approx. Comment. Math., 25(1997), 37-44. 1
- [11] Garcia-Cuerva, J., Rubio de Francia, J.L., Weighted Norm Inequalities and Related Topics, North-Holland Math., 16, Amsterdam, 1985. 2.1
- [12] Grafakos, L., Classical and Modern Fourier Analysis, Pearson Education, Inc. Upper Saddle River, New Jersey, 2004. 2.1
- [13] Guliyev, V.S., Integral Operators on Function Spaces on The Homogeneous Groups and on Domains in R n [in Russian], Diss. Steklov Math. Inst., Moscow, 1994. 1
- [14] Guliyev, V.S, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., 2009, Art. ID 503948, 20 pp. 1
- [15] Guliyev, V.S., Shukurov, P.S., On the boundedness of the fractional maximal operator, Riesz potential and their commutators in generalized Morrey spaces, Advances in Harmonic Analysis and Operator Theory, Series: Operator Theory: Advances and Applications, 229(2013), 175-199. 3.5, 4.3
- [16] Guliyev, V.S., Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J., 3(3)(2012), 33-61. 1, 4
- [17] Guliyev, V.S., Ismayilova, A.F., Kucukaslan, A., Serbetci, A., Generalized fractional integral operators on generalized local Morrey spaces, Journal of Function Spaces, Volume 2015, Article ID 594323, 8 pages. 1, 2, 4.5, 4.5
- [18] Gunawan, H., A note on the generalized fractional integral operators, J. Indones. Math. Soc., 9(1)(2003), 39-43. 1
- [19] Komori, T.Y., Shirai, S., Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282(2), (2009), 219-231. 1
- [20] Kucukaslan, A., Hasanov, S.G, Aykol, C., Generalized fractional integral operators on vanishing generalized local Morrey spaces, Int. J. of Math. Anal., 11(6)(2017), 277–291. 1
- [21] Kucukaslan, A., Guliyev, V.S., Serbetci, A., Generalized fractional maximal operators on generalized local Morrey spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 69(1)(2020), 73-87, DOI: 10.31801/cfsuasmas. 1, 3.4, 4, 4.2
- [22] Kucukaslan, A., Equivalence of norms of the generalized fractional integral operator and the generalized fractional maximal operator on generalized weighted Morrey spaces, Annals of Funct. Analysis, 2020, DOI: 10.1007/s43034-020-00066-w 1
- [23] Mazzucato, A.L., Besov-Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355(4)(2003), 1297-1364, DOI 10.1090/S0002-9947-02-03214-2. 1
- [24] Morrey, C.B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43(1938), 126-166. 1
- [25] Muckenhoupt, B., Wheeden, R., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165(1972), 261-274. 1, 2, 3.1
- [26] Muckenhoupt, B., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192(1974), 207-226. 1
- [27] Mustafayev, R., Kucukaslan, A., An extension of Muckenhoupt-Wheeden theorem to generalized weighted Morrey spaces, Georgian Math. Journal, DOI: https://doi.org/10.1515/gmj-2020-2056. 1
- [28] Nakai, E., Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces, Math. Nachr., 166(1994), 95-103. 1
- [29] Nakai, E., On Generalized Fractional Integrals on The Weak Orlicz Spaces, BMOϕ , The Morrey Spaces and The Campanato Spaces, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), 389-401, de Gruyter, Berlin, 2002. 1
- [30] Nakai, E., Generalized fractional integrals on generalized Morrey spaces, Math. Nachr., 287(2-3)(2014), 339–351. 1
- [31] Nakamura, S., Generalized weighted Morrey spaces and classical operators, Math. Nachr., 289, No. 1718, (2016). DOI:10.1002/mana.201500260. 1
- [32] Peetre, J., On the theory of Mp,λ, J. Funct. Anal., 4(1969) 71-87. 1, 3.6, 4.4
- [33] Ruiz, A., Vega, L., Unique continuation for Schr ¨odinger operators with potentials in the Morrey class, Publ. Math., 35(2)(1991), 291-298, Conference of Mathematical Analysis (El Escorial, 1989). 1
- [34] Sawano, Y., Sugano, S., Tanaka, H., Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc., 363(12)(2011), 6481-6503. 1
- [35] Sawano, Y., Boundedness of the Generalized Fractional Integral Operators on Generalized Morrey Spaces over Metric Measure Spaces, Journal of Analysis and its Applications, 36(2)(2017) 159-190 DOI: 10.4171/ZAA/1584 1
- [36] Sugano, S., Some inequalities for generalized fractional integral operators on generalized Morrey spaces, Math. Inequal. Appl., 14(4)(2011), 849–865. 1