Fuzzy Soft Bi-Interior Ideals Over Semirings

Fuzzy Soft Bi-Interior Ideals Over Semirings

In this paper, we introduce the notion of fuzzy soft bi-interior ideals over semirings and study someof their algebraical properties.

___

  • [1] Acar, U., Koyuncu F., Tanay, B., Soft sets and soft rings, Comput. and Math. with Appl., 59(2010), 3458–3463. 1
  • [2] Aktas H., Cagman, N., Soft sets and soft groups, Infor. Sci., 177(2007), 2726–2735. 1
  • [3] Ghosh,J., Dinda, B., Samanta, T. K., Fuzzy soft rings and fuzzy soft ideals, Int. J. Proc. App. Sci. Tech., 2(2)(2011), 66–74. 1
  • [4] Good, R. A., Hughes, D. R., Associated groups for a semigroup, Bull. Amer. Math. Soc., 58(1952), 624–625. 1
  • [5] Feng, F., Jun, Y. B., Zhao, X., Soft semirings, Comput. and Math. with Appli., 56(2008), 2621–2628. 1
  • [6] Henriksen, M., Ideals in semirings with commutative addition, Amer. Math. Soc. Not., 5(1958), 321. 1, 2.1
  • [7] Iseki, K., Quasi-ideals in semirings without zero, Proc. Japan Acad., 34(1958), 79–84. 1
  • [8] Iseki, K., Ideal theory of semiring, Proc. Japan Acad., 32(1956), 554–559. 1
  • [9] Iseki, K., Ideal in semirings, Proc. Japan Acad., 34(1958), 29–31. 1
  • [10] Jagatap, R. D., Pawar, Y.S., Quasi-ideals and minimal quasi-ideals in Γ− semirings, Novi Sad J. Math., 39(2) (2009), 79–87. 1
  • [11] Kuroki, N., On fuzzy semigroups, Infor. Sci., 53(3)(1991), 203–236. 1
  • [12] Lajos, S., On the bi-ideals in semigroups, Proc. Japan Acad., 45(1969), 710–712. 1
  • [13] Lajos, S., Szasz, F. A., On the bi-ideals in associative ring, Proc. Japan Acad., 46(1970), 505–507. 1
  • [14] Liu, W. J., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and Systems, 8(2)(1982), 133–139. 1
  • [15] Maji, P. K., Biswas, R., Roy, A. R., Fuzzy soft sets, The J. of Fuzzy Math., 9(3)(2001), 589–602. 1
  • [16] Majumdar, P., Samanta, S.K., Generalised fuzzy soft sets, Comput. and Math. with Appl., 59(2010), 1425–1432. 1
  • [17] Mandal, D., Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy info. and Engg., 6(2014), 101–114. 1
  • [18] Molodtsov, D., Soft set theory-first results, Comput. and Math. with Appl., 37(1999), 19–31. 1
  • [19] Murali Krishna Rao, M., T−fuzzy ideals in ordered Γ− semirings, Anl. of Fuzzy Math. and Info., 13(2)( 2017), 253–276. 1
  • [20] Murali Krishna Rao, M., Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst., 8(2018), 45–53 . 1
  • [21] Murali Krishna Rao, M., Bi-quasi-ideals and fuzzy bi-quasi-ideals of Γ− semigroups, Bull. Int. Math. Virtual Inst., 7(2)(2017), 231–242. 1, 2
  • [22] Murali Krishna Rao, M., Fuzzy left and right bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst., 8(3)(2018), 449–460. 1, 2
  • [23] Murali Krishna Rao, M., Venkateswarlu, B., Adi Naryana, Y., Bi-interior ideals of semiring, (communicated). 1, 2
  • [24] Murali Krishna Rao, M., Fuzzy soft Γ− semiring and fuzzy soft k−ideal over Γ− semiring, Anl. of Fuzzy Math. and Info., 9(2)(2015), 12–25. 1, 2, 2.18
  • [25] Rosenfeld, A., Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512–517. 1
  • [26] Steinfeld, O., Uher die quasi ideals, Von halbgruppend Publ. Math., Debrecen, 4(1956), 262–275. 1
  • [27] Swamy, U. M., Swamy, K. L. N., Fuzzy prime ideals of rings, J. Math. Anal. Appl., 134(1988), 94–103. 1
  • [28] Vandiver, H. S., Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc.(N.S.), 40(1934), 914–920. 1
  • [29] Venkateswarlu, B., T. Sri Lakshmi and Y. Adi Naryana, Fuzzy bi-interior ideals of semirings, (comminicated). 1, 2, 2.19
  • [30] Zadeh, L. A., Fuzzy sets, Information and control, 8(1965), 338–353. 1