Some New Inequalities via Berezin Numbers
Some New Inequalities via Berezin Numbers
The Berezin transform $\widetilde{T}$ and the Berezin radius of an operator
$T$ on the reproducing kernel Hilbert space $\mathcal{H}\left( Q\right) $
over some set $Q$ with the reproducing kernel $K_{\eta}$ are defined,
respectively, by
\[
\widetilde{T}(\eta)=\left\langle {T\frac{K_{\eta}}{{\left\Vert K_{\eta
}\right\Vert }},\frac{K_{\eta}}{{\left\Vert K_{\eta}\right\Vert }}%
}\right\rangle ,\ \eta\in Q\text{ and }\mathrm{ber}(T):=\sup_{\eta\in
Q}\left\vert \widetilde{T}{(\eta)}\right\vert .
\]
We study several sharp inequalities by using this bounded function
$\widetilde{T},$ involving powers of the Berezin radius and the Berezin norms
of reproducing kernel Hilbert space operators. We also give some inequalities
regarding the Berezin transforms of sum of two operators.
___
- Bakherad, M., Garayev, M.T., Berezin number inequalities for operators, Concr. Oper., 6(1)(2019), 33-43.
- Başaran, H. Gürdal, M., Berezin number inequalities via Young inequality, Honam Mathematical J., 43(3)(2021), 523-537.
- Başaran, H., Gürdal, M., Güncan, A.N., Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1)(2019), 523-532.
- Berezin, F.A., Covariant and contravariant symbols for operators, Izv. Akad. Nauk SSSR Ser. Mat., 36(1972), 1134-1167.
- Bhatia, R., Kittaneh, F., Norm inequalities for positive operators, Left. Math. Phys., 43(1998), 225-231.
- Dragomir, S.S., Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl., 419(1)(2006), 256-264.
- Dragomir, S. S., Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, Springer Briefs in Mathematics, Springer, Cham, Switzerland, 2013.
- El-Haddad, M., Kittaneh, F., Numerical radius inequalities for Hilbert space operators (II), Studia Math., 182(2)(2007), 133-140.
- Furuta, T., Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys., 1(1989), 135-137
- Garayev, M., Bouzeffour, F., Gürdal, M., Yangöz, C.M., Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35(2020), 1-20.
- Garayev, M.T., Gürdal, M., Okudan, A., Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19(3)(2016), 883-891.
- Garayev, M.T., Gürdal, M., Saltan, S., Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems, Positivity, 21(4)(2017), 1615-1623.
- Garayev, M.T., Gürdal, M., Yamanci, U., Alsahli, G.M., Boundary behavior of Berezin symbols and related results, Filomat, 33(14)(2019), 4433-4439
- Garayev, M.T., Guedri, H., Gürdal, M., Alsahli, G.M., On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69(11)(2021), 2059-2077.
- Garayev, M., Saltan, S., Bouzeffour, F., Aktan, B., Some inequalities involving Berezin symbols of operator means and related questions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114(85)(2020), 1-17.
- Gürdal, M., Duman, N., Berezin number inequalities involving superquadratic functions, Casp. J. Math. Sci., 10(1)(2021), 18-27
- Gustafson, K.E., Rao, D.K.M., Numerical Range, Springer-Verlag, New York, 1997.
- Halmos, P. R., A Hilbert Space Problem Book , 2nd ed., Springer, New York, 1982.
- Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities. 2nd ed., Cambridge Univ. Press, Cambridge, 1988.
- Huban, M.B., Başaran, H., Gürdal, M., New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3)(2021), 1-12.
- Huban, M.B., Gürdal, M., Tilki, H., Some classical inequalities and their applications, Filomat, 35(7)(2021), 2165-2173.
- Karaev M.T., Berezin set and Berezin number of operators and their applications, The 8th Workshop on Numerical Ranges and Numerical Radii (WONRA -06),University of Bremen, July 15-17, (2006), p.14.
- Karaev, M.T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238(2006), 181-192.
- Karaev, M.T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7(2013), 983-1018.
- Kittaneh, F., Notes on some inequalities for Hilbert space operators, Publ. Res. Ins. Math. Sci., 24(1988), 283-293.
- Kittaneh, F., Singular values of companion matrices and bounds on zeros of polynomials, SIAM J. Matrix Anal. Appl., 16(1995), 333-340.
- Kittaneh, F., Norm inequalities for sums of positive operators, J. Operator Theory, 48(2002), 95-103.
- Kittaneh, F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158(1)(2003), 11-17.
- Kittaneh, F., Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1)(2005), 73-80.
- Kittaneh, F., Manasrah, Y., Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361(2010), 262-269.
- Kittaneh, F., Moslehian, M.S., Yamazaki, T., Cartesian decomposition and numerical radius inequalities, Lin. Algeb. Appl., 471(2015), 46-53.
- Tapdigoglu, R., New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15(3)(2021), 1031-1043.
- Tapdigoglu, R., Gürdal, M., Altwaijry, N., Sarı, N., Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Oper. Matrices, 15(4)(2021), 1445-1460.
- Yamancı, U., Gürdal, M., On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math., 23(2017), 1531-1537.
- Yamancı, U., Gürdal, M., Garayev, M.T., Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat, 31(2017), 5711-5717.
- Yamancı, U., Tunç, R., Gürdal, M., Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43(3)(2020), 2287-2296.