Interaction of Codazzi Pairs with Almost Para Norden Manifolds
Interaction of Codazzi Pairs with Almost Para Norden Manifolds
In this paper, we research some properties of Codazzi pairs on almost para Norden manifolds. Let $(M_{2n},\ \varphi ,\ g,G)$ be an almost para Norden manifold. Firstly, $g$-conjugate connection, $G$-conjugate connection and $\varphi $-conjugate connection of a linear connection $\mathrm{\nabla }$ on $M_{2n}$ denoted by ${\mathrm{\nabla }}^{*\
},\ {\mathrm{\nabla }}^{\dagger \ }$ and ${\mathrm{\nabla }}^{\varphi \ }$ are defined and it is demonstrated that on the spaces of linear connections, $\left(id,\ *,\dagger ,\varphi \right)$ acts as the four-element Klein group. We also searched some properties of these three types conjugate
connections. Then, Codazzi pairs $\left(\mathrm{\nabla },\varphi \right)\ ,\left(\mathrm{\nabla },g\right)$ and $\left(\mathrm{\nabla },G\right)$ are introduced and some properties of them are given. Let $R\ ,\ R^{*\ }$and $R^{\dagger \ }$are $(0,4)$-curvature tensors of conjugate connections
$\mathrm{\nabla }\mathrm{\ ,\ }{\mathrm{\nabla }}^{*\ }$and ${\mathrm{\nabla }}^{\dagger \ }$, respectively. The relationship among the curvature tensors is investigated. The condition of $N_{\varphi }=0$ is obtained, where $N_{\varphi }$ is Nijenhuis tensor field on $M_{2n}$ and it is known
that the condition of integrability of almost para complex structure $\varphi $ is $N_{\varphi }=0$. In addition, Tachibana operator is applied to the pure metric $g$ and a necessary and sufficient condition $\left(M,\varphi ,\ g,G\right)$ being a para Kahler Norden manifold is found. Finally, we examine $\varphi $-invariant linear connections and statistical manifolds.
___
- Blaga, M., A. Crasmareanu, M., The geometry of complex conjugate connections, Hacettepe Journal of Mathematics and Statistics, 41(1)(2012), 119-126.
- Blaga, M., A. Crasmareanu, M., The geometry of tangent conjugate connections, Hacettepe Journal of Mathematics and Statistics, 44(4)(2015), 767-774.
- Calın, O., Matsuzoe, H., Zhang, J., Generalizations of conjugate connections, Trends in Differential Geometry, Complex Analysis and Mathematical Physics, (2009), 26-34.
- Catino, G., Mantegazza, C., Mazzieri, L., A note on Codazzi tensors, Math. Ann., 362(2015), 629-638.
- D'atri, J.E., Codazzi tensors and harmonic curvature for left invariant metrics, Geometriae Dedicata, 19(3 (1985), 229-236.
- Derdzinski, A., Shen, C., Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc., 47(3)(1983), 15-26.
- Derdzinski, A., Some Remarks on The Local Structure of Codazzi Tensors, Global Differential Geometry and Global Analysis, Springer, Berlin, Heidelberg, 1981.
- Dillen, F., Nomizu, K., Vranken, L., Conjugate connections and Radon's theorem in affine differential geometry, Mh. Math., 109(1990), 221-235.
- Etayo, F., Santamaria, R., $\left( J^{2}=\mp 1\right) -$ metric manifolds, Publ. Math. Debrecen, 57(3-4)(2000), 435-444.
- Fei, T., Zhang, J., Interaction of Codazzi couplings with (Para-) Kahler geometry, Results Math., 72(2017), 2037-2056.
- Ganchev, G.T., Borisov, A.V., Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgarie Sci., 39(5)(1986), 31-34.
- Gebarowski, A., The structure of Certain Riemannian manifolds admitting Codazzi tensors, Demonstratio Mathematica, 27(1)(1994), 249-252.
- Gezer, A., Cakicioglu, H., Notes concerning Codazzi pairs on almost anti-hermitian manifolds, In press.
- İşcan, M., Sarsılmaz, H., Turanli, S., On 4-dimensional almost Para complex pure walker Mmnifolds, Turkish Journal of Mathematics, 38(2014), 1071-1080.
- Kruchkovich, G.I., Hypercomplex structure on a manifold, I. Tr. Sem. Vect. Tens. Anal. Moscow Univ., 16(1972), 174-201.
- Lauritzen, S.L., Statistical Manifolds, In: Differential geometry in statistical inferences, IMS Lecture Notes Monograph Series Institute of Mathematical Statistics, 10(1987), 163-216.
- Nomizu, K., Simon, U., Notes on Conjugate Connections, In Geometry and Topology of Submanifolds IV, eds. F. Dillen and L. Verstraelen, Word Scientific, 1992.
- Pinkall, U., Schwenk-Schellschmidt, A., Simon, U., Geometric methods for solving Codazzi and Monge-Ampere equations, Math. Ann., 298(1994), 89-100.
- Salimov, A.A., Almost analyticity of a Riemannian metric and integrability of a structure, Trudy Geom. Sem. Kazan. Univ., 15(1983), 72-78.
- Salimov, A.A., On operators associated with tensor fields, J. Geom., 99(1-2)(2010), 107-145.
- Salimov, A.A., Iscan, M., Akbulut, K., Notes on Para-Norden-Walker 4-Manifolds, International Journal of Geometric Methods in Modern Physics, 7(8)(2010), 1331-1347.
- Salimov, A.A., Iscan, M., Etayo, F., Paraholomorphic B-manifold and its properties, Topology Appl., 154(2007), 925-933.
- Salimov, A.A., Turanli, S., Curvature properties of anti-Kahler Codazzi manifolds, C.R. Acad. Sci. Paris. Ser. I, 351(5-6)(2013), 225-227.
- Salimov, A.A., Akbulut, K., Turanli, S., On an İsotropic property of anti-Kahler Codazzi manifolds, C.R. Acad. Sci. Paris. Ser. I, 351(21-22)(2013), 837-839.
- Schwenk-Schellschmidt, A., Simon, U., Codazzi-equivalent affine connections, Result. Math., 56(2009), 211-229.
- Shandra, G.I., Stepanov, S.E., Mikes, J., On Higher-order Codazzi tensors on complete Riemannian manifolds, Annals of Global Analysis and Geometry, 56(2019), 429-442.
- Simon, U., A further method in differential geometry, Abh. Math. Sem. Hamburg, 44(1)(1975), 52-69.
- Simon, U., Codazzi Tensors, Global Differential Geometry and Global Analysis, Springer, Berlin, Heidelberg, 1981.
- Simon, U., Schwenk-Schellschmidt, A., Vrancken, L., Codazzi-equivalent Riemannian metrics, Asian J. Math., 14(3)(2010), 291-302.
- Tachibana, A., Analytic tensor and its generalization}, T\^{o}hoku Math. J., 12(2)(1960), 208-221.
- Vishnevskii, V.V., Integrable affinor structures and their plural interpretations, J. of Math. Sciences, 108(2)(2002), 151-187.