Notes on Sophie Germain Primes
Notes on Sophie Germain Primes
In this paper, a pair of Sophie Germain prime and connected safe prime is referred to as S G-S -primepair in short. We focus on a characterization to obtain S G-S -prime pairs owing to an eliminating method. We formsome certain instructions for a sieve as an elementary method to find the S G-S -prime pairs and we also give anexample in which we use our instructions to obtain the S G-S -prime pairs up to 250.Wilson’s fundamental theorem in number theory gives a characterization of prime numbers via a congruence. Moreover, in this paper, we give a characterization of Sophie Germain primes via a congruence.
___
- [1] Alkalay-Houlihan C., Sophie Germain and Special Cases of Fermat’s Last Theorem. http://www.math.mcgill.ca/darmon/courses/12- 13/nt/projects/Colleen-Alkalay-Houlihan.pdf. Accessed: 2017-03-20.
- [2] Bishop, S. A., Okagbue, H. I., Adamu, M. O., Olajide, F. A., Sequences of numbers obtained by digit and iterative digit sums of Sophie Germain primes and its variants, Global Journal of Pure and Applied Mathematics 12, 2 (2016), 1473-1480.
- [3] Bucciarelli, L.L., Dworsky N., Sophie Germain: An essay in the history of the theory of elasticity, Vol. 6., Springer Science and Business Media, Netherland, 2012.
- [4] Caldwell, C.K., Prime Pages. The Top Twenty: Sophie Germain. http://primes.utm.edu/top20/page.php?id=2.
- [5] Clement, P. A., Congruences to sets of primes, Am. Math. Mon. 56 (1949), 23-25.
- [6] Daniloff, L.L., The Work of Sophie Germain and Niels Henrik Abel on Fermat’s Last Theorem. MS thesis. 2017.
- [7] Lampret, S., Sieving 2m-prime pairs, Notes on Number Theory and Discrete Mathematics 20 (2014), 54-46.
- [8] Liu, F., On the Sophie Germain prime conjecture, WSEAS Transactions in Math 10, 2 (2011), 421-430.
- [9] Meireles, M., On Sophie Germain primes. Proc. 13th WSEAS Int. Conf. App. Math. (2008), 370-373.
- [10] Ribenboim, P., 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, New York, 1979.
- [11] Ribenboim, P., Fermat’s Last Theorem for Amateurs, Springer-Verlag, New York, 1999.
- [12] Ribenboim, P., The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004.