Local T1 Preordered Spaces

Local T1 Preordered Spaces

The aim of this paper is to characterize local T1 preordered spaces as well as to investigate someinvariance properties of them.

___

  • [1] Adamek, J. , Herrlich, H., Strecker, G.E., Abstract and Concrete Categories, John Wiley and Sons, New York, 1990.
  • [2] Baran, M., Separation properties, Indian J. Pure Appl. Math., 23(1991), 333–341.
  • [3] Baran, M., The notion of closedness in topological categories, Comment. Math. Univ. Carolinae, 34(1993), 383–395.
  • [4] Baran, M., Altindis, H., T2-objects in topological categories, Acta Math. Hungar. 71(1996), 41–48.
  • [5] Baran, M., Separation properties in topological categories, Math Balkanica 10(1996), 39–48.
  • [6] Baran, M., Completely regular objects and normal objects in topological categories, Acta Math. Hungar., 80(1998), 211–224.
  • [7] Baran, M., Closure operators in convergence spaces, Acta Math. Hungar. 87(2000), 33–45.
  • [8] Baran, M., Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures, 10(2002), 403–415.
  • [9] Baran, M., Al-Safar, J., Quotient-Reflective and Bireflective Subcategories of the category of Preordered Sets, Topology and its Appl., 158(2011), 2076–2084.
  • [10] Baran, M. Kula, S., Erciyes, A., T0 and T1 semiuniform convergence space, Filomat, 27(2013), 537–546.
  • [11] Baran, M., Kula, S., Baran, T.M., Qasim, M., Closure operators in semiuniform convergence space, Filomat, 30(2016), 131–140.
  • [12] Baran, T.M., Kula, M., T1 Extended pseudo-quasi-semi metric spaces , Mathematical Sciences and Appl. E-Notes, 5(2017), 40–45.
  • [13] Dikranjan, D., Giuli, E., Closure operators I, Topology and its Appl., 27(1987), 129–143.
  • [14] Dikranjan, D., Tholen, W., Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
  • [15] Duquenne, V., Latticial structure in data analysis, Theoret. Comput. Sci. 217(1999), 407–436.
  • [16] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S., Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, 2003.
  • [17] Kula, M., A note on Cauchy spaces, Acta Math Hungar., 133(2011), 14–32.
  • [18] Koshevoy, G.A., Choice functions and abstract convex geometries, Math. Social Sci., 38(1999), 35–44.
  • [19] Larrecq, J.G., Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
  • [20] Nel, L.D., Initially structured categories and cartesian closedness, Canadian J.Math., 27(1975), 1361-1377.
  • [21] Preuss, G., Theory of Topological Structures, An Approach to Topological Categories, Dordrecht; D Reidel Publ Co, 1988.
  • [22] Preuss, G., Foundations of topology, An approach to Convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
  • [23] Scott, D.S., Continuous lattices, Lecture Notes in Mathematics, Springer-Verlag, 274(1972), 97–136.
  • [24] Scott, D.S., Data types as lattices, Proceedings of the International Summer Institute and Logic Colloquium, Kiel, in: Lecture Notes in Mathematics, Springer-Verlag, 499(1975), 579–651.
  • [25] Scott, D.S., Domains for denotational semantics, in: Lecture Notes in Comp. Sci., Springer-Verlag, 140(1982), 97–136.
  • [26] Winskel, G. The Formal Semantics of Programming Languages, an Introduction. Foundations of Computing Series. The MIT Press, 1993.