Some Inequalities for Ricci Solitons
Some Inequalities for Ricci Solitons
We deal with a submanifold of a Ricci soliton (M¯ , g¯, V, λ) and obtain that under what conditions such asubmanifold is Ricci soliton. Moreover, we establish some inequalities for Ricci solitons to obtain the relationshipsbetween the intrinsic or extrinsic invariants.
___
- [1] Barros, A, Vieira Gomes, JN, Ribeiro, E. Immersion of almost Ricci solitons into a Riemannian manifold , Math. Cont. 40(2011), 91–102.
- [2] Bejan, C.L., Crasmareanu, M., Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen. 78(2011), 235–243.
- [3] Bejan, C.L., Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Anal. Glob. Anal. Geom. 46(2014), 117–128.
- [4] Blaga, A.M., Perktaş, S.Y., Remarks on almost η−Ricci solitons in (ε)-para Sasakian manifolds, (2018), arXiv:1804.05389v1.
- [5] Blaga, A.M., Perktaş, S.Y, Acet, B.E., Erdogan, F.E., ˘ η−Ricci solitons in (ε)-almost paracontact metric manifolds, (2017), arXiv: 1707.07528v2.
- [6] Calin, C., Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f -Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. 33(2010), 361–368.
- [7] Besse, A.L., Einstein manifolds, Berlin-Heidelberg-New York: Spinger-Verlag, 1987.
- [8] Chen, B.Y., Concircular vector fields and pseudo-K¨ahler manifolds, Kragujevac J. Math. 40(2016), 7–14.
- [9] Chen B.Y., Deshmukh, S., Ricci solitons and concurrent vector Field, Balkan J. Geom. Its Appl. 20(2015), 14–25.
- [10] Chen, B.Y., Ricci solitons on Riemannian submanifolds. In: Mihai A, Mihai I, editors. RIGA-Proceedings of the Conference; 19-21 May; Bucharest, Romania. University of Bucharest Press, (2014) 30–45.
- [11] Chen, B.Y., Deshmukh, S., Classification of Ricci solitons on Euclidean hypersurfaces, Int. J. Math. 25(2014), 22 pp.
- [12] Hamilton, R.S., The Ricci flow on surfaces, Mathematics and General Relativity(Santa Cruz, CA, 1986), Contemp. Math. Amer. Math. Soc. 71(1988), 237–262.
- [13] Perelman, G., The Entropy formula for the Ricci flow and its geometric applications, (2002) arXiv math/0211159. 1
- [14] Tripathi, M.M., Certain basic inequalities for submanifolds in (κ, µ) -space, Recent advances in Riemannian and Lorentzian geometries, Baltimore: MD, 2003.
- [15] Deshmukh, S., Alodan, H., Al-Sodais, H., A note on Ricci solitons, Balkan J. Geom. Its Appl. 16(2011) 48–55. 1
- [16] Perktaş, S.Y., Keleş, S., Ricci solitons in 3-dimensional normal almost paracontact metric manifolds, Int. Elect. J. Geom. 8(2015), 34–45.