Fuzzy Soft Bi-Interior Ideals Over Semirings
In this paper, we introduce the notion of fuzzy soft bi-interior ideals over semirings and study some of their algebraical properties.
___
- Acar, U., Koyuncu F., Tanay, B., {\em Soft sets and soft rings}, Comput. and Math. with Appl., \textbf{59}(2010), 3458--3463.
- Aktas H., Cagman, N., {\em Soft sets and soft groups}, Infor. Sci., \textbf{177}(2007), 2726--2735.
- Ghosh,J., Dinda, B., Samanta, T. K., {\em Fuzzy soft rings and fuzzy soft ideals}, Int. J. Proc. App. Sci. Tech., \textbf{2(2)}(2011), 66--74.
- Good, R. A., Hughes, D. R., {\em Associated groups for a semigroup}, Bull. Amer. Math. Soc., \textbf{58}(1952), 624--625.
- Feng, F., Jun, Y. B., Zhao, X., {\em Soft semirings}, Comput. and Math. with Appli., \textbf{56}(2008), 2621--2628.
- Henriksen, M., {\em Ideals in semirings with commutative addition}, Amer. Math. Soc. Not., \textbf{5}(1958), 321.
- Iseki, K., {\em Quasi-ideals in semirings without zero}, Proc. Japan Acad., \textbf{34}(1958), 79--84.
- Iseki, K., {\em Ideal theory of semiring}, Proc. Japan Acad., \textbf{32}(1956), 554--559.
- Iseki, K., {\em Ideal in semirings}, Proc. Japan Acad., \textbf{34}(1958), 29--31.
- Jagatap, R. D., Pawar, Y.S., {\em Quasi-ideals and minimal quasi-ideals in $\Gamma-$ semirings}, Novi Sad J. Math., \textbf{39(2)}(2009), 79--87.
- Kuroki, N., {\em On fuzzy semigroups}, Infor. Sci., \textbf{53(3)}(1991), 203--236.
- Lajos, S., {\em On the bi-ideals in semigroups}, Proc. Japan Acad., \textbf{45}(1969), 710--712.
- Lajos, S., Szasz, F. A., {\em On the bi-ideals in associative ring}, Proc. Japan Acad., \textbf{46}(1970), 505--507.
- Liu, W. J., {\em Fuzzy invariant subgroups and fuzzy ideals}, Fuzzy sets and Systems, \textbf{8(2)}(1982), 133--139.
- Maji, P. K., Biswas, R., Roy, A. R., {\em Fuzzy soft sets}, The J. of Fuzzy Math., \textbf{9(3)}(2001), 589--602.
- Majumdar, P., Samanta, S.K., {\em Generalised fuzzy soft sets}, Comput. and Math. with Appl., \textbf{59}(2010), 1425--1432.
- Mandal, D., {\em Fuzzy ideals and fuzzy interior ideals in ordered semirings}, Fuzzy info. and Engg., \textbf{6}(2014), 101--114.
- Molodtsov, D., {Soft set theory-first results}, Comput. and Math. with Appl., \textbf{37}(1999), 19--31.
- Murali Krishna Rao, M., {\em $T-$fuzzy ideals in ordered $\Gamma-$ semirings}, Anl. of Fuzzy Math. and Info., \textbf{13(2)}( 2017), 253--276.
- Murali Krishna Rao, M., {\em Left bi-quasi ideals of semirings}, Bull. Int. Math. Virtual Inst., \textbf{8}(2018), 45--53 .
- Murali Krishna Rao, M., {\em Bi-quasi-ideals and fuzzy bi-quasi-ideals of $\Gamma-$ semigroups}, Bull. Int. Math. Virtual Inst., \textbf{7(2)}(2017), 231--242.
- Murali Krishna Rao, M., {\em Fuzzy left and right bi-quasi ideals of semirings}, Bull. Int. Math. Virtual Inst., \textbf{8(3)}(2018), 449--460.
- Murali Krishna Rao, M., Venkateswarlu, B., Adi Naryana, Y., Bi-interior ideals of semiring, (communicated).
- Murali Krishna Rao, M., {\em Fuzzy soft $\Gamma-$ semiring and fuzzy soft $k-$ideal over $\Gamma -$ semiring}, Anl. of Fuzzy Math. and Info., \textbf{9(2)}(2015), 12--25.
- Rosenfeld, A., {\em Fuzzy groups}, J. Math. Anal. Appl., \textbf{35}(1971), 512--517.
- Steinfeld, O., {\em Uher die quasi ideals}, Von halbgruppend Publ. Math., Debrecen, \textbf{4}(1956), 262--275.
- Swamy, U. M., Swamy, K. L. N., {\em Fuzzy prime ideals of rings}, J. Math. Anal. Appl., \textbf{134}(1988), 94--103.
- Vandiver, H. S., {\em Note on a simple type of algebra in which cancellation law of addition does not hold}, Bull. Amer. Math. Soc.(N.S.), \textbf{40}(1934), 914--920.
- Venkateswarlu, B., T. Sri Lakshmi and Y. Adi Naryana, Fuzzy bi-interior ideals of semirings, (comminicated).
- Zadeh, L. A., {\em Fuzzy sets}, Information and control, \textbf{8}(1965), 338--353.