The changes of 2,4 dinitrophenol substance applied to corn seeds in AOX and ATP synthase gene expression against chilling stress

The changes of 2,4 dinitrophenol substance applied to corn seeds in AOX and ATP synthase gene expression against chilling stress

Plants get stressed when they are out of optimum living conditions. When the stress conditions exceed toleration level, they cause lots of sequential damages that are very difficult to repair for physical, biochemical and molecular mechanism of plants. The recent studies intended for strengthening resistance mechanism at gene level is also one of the popular research subjects. In this context, clearing up genes supplying resistance for plants (especially as food) which are exposed to instant temperature changes may provide convenience for other researchers to prevent loss of yield. In this study, changes of genes belonging to the enzyme named alternative oxidase (AOX) which is known to be active at low temperatures and located in mitochondrial ETS (electron transport system) by applying a substance named 2,4 dinitrophenol on corn seeds (Zea mays) were tried to be determined exogenously. It is known that AOX tranfers electrons to oxygen to prevent occuring reactive oxygen species with accelerating respiration at low temperatures. Besides, it is also known as that AOX causes available energy spread as heat since it prevents occurrence of necessary electrochemical gradient for ATP synthesis. It was seen that dinitrophenol (DNP) known as slimming medicine in literature reviews is a chemical substance which disrupts electrochemical gradient and inhibits ATP synthesis, spreads available energy as heat. This similarity between AOX and DNP has directed us to research working mechanism of DNP and AOX. Finally, it was seen that DNP increases resistance against cold by stimulating AOX gene expression and repressing ATP synthase expression.

___

  • Alscher, R. G., Donahue, J. L., & Cramer, C. (1997). Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plantarum 100, 224-233.
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55:373-99.
  • Asada, K. (1997). The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In: Scandalios JG, editor. Oxidative stress and the molecular biology of antioxidant defense. Cold Spring Harbor Laboratory Press. p. 715–35.
  • Borecky, J., & Vercesi, A. E. (2005). Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. Bioscience Reports 24, 269-283.
  • Calegario, F. F., Cosso., R. G., Fagian, M. M., Almeida, F. V., Jardim, W. F., Jezek, P., Arruda, P., & Vercesi, A. E. (2003). Stimulation of Potato Tuber Respiration by Cold Stress is Associated with an Increased Capacity of Both Plant Uncoupling Mitochondrial Protein (PUMP) and Alternative Oxidase. Journal of Bioenergetics and Biomembranes 35, 211-220.
  • Creencia, R. P., & Bramlage, W. J. (1971). Reversibility of Chilling Injury to Corn Seedlings. Plant Physiol Vol. 47.
  • De Santis, A., Landi, P., Gench,i G. (1999). Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiology 119, 743-754.
  • De Virville, J. D., Cantrel, C., Bousquet, A. L., Hoffelti, M., Tenreiro, A. M., Pinto, V. V., Arrabaça, J. D., Caiveau, O., Moreau, F., & Zachowski, A. 2002. Homeoviscous and functional adaptations of mitochondrial membranes to growth temperature in soybean seedlings. Plant Cell Environ. 25: 1289-1297.
  • Duan, M., Feng, H. L., Wang, L. Y., Li, D., & Meng, Q. W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato Journal of Plant Physiology 169: 867– 877.
  • Eaks, I. L. (1960). Physiological studies of chilling injury in citrus fruits. Plant Physiol. 35, 632-636.
  • Elstner, E. F., & Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase, Anal. Biochem. 70:616-620.
  • Erdal, S., & Genisel, M. (2016). The property of progesterone to mitigate cold stress in maize is linked to a modulation of the mitochondrial respiratory pathway. Theor. Exp. Plant Physiol. 28:385–393.
  • Erdal, S., & Turk. H. (2016). Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress, Environ. Exp. Bot. 132: 92-99.
  • Genisel, M. (2012). Alternatif Oksidaz’ın Moleküler Düzeyde Aktifleştirilmesi ile Nohut ve Buğday Bitkilerinin Soğuk Stresine Karşı Dirençlerinin Artırılması. Doktora Tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Botanik Bilim Dalı. Erzurum.
  • Gifford, B. P. (1967). The mechanism of Uncoupling of Oxidative Phosphorylation by 2,4- Dinitrophenol. The Journal of Biological Chemistry, 242(20), 4577-4583.
  • Goldgof, M., Xiao, C., Chanturiya, T., Jou, W., Gavrilova, O., & Reitman, M. L. (2014). The Chemical Uncoupler 2,4-Dinitrophenol (DNP) Protects against Diet-induced Obesity and Improves Energy Homeostasis in Mice at Thermoneutrality. The Journal Of Biological Chemistry 289(28), 19341-19350.
  • Heath, R.L., & Packer, L., (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 25, 189-198.
  • Jezˇek, P., Borecky´, J., Za´ckova, M., Costa, A. D. T., & Arruda, P. (2001). Possible Basic and Specific Functions of Plant Uncoupling Proteins (pUCP). Bioscience Reports 21, 2.
  • Jin, Y., McEwen, M. L., Nottingham, S. A., Maragos, W. F., Dragicevic, N. B., Sullivan, P. G., & Springer, J. E. (2004). The mitochondrial uncoupling agent 2,4- dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord.. J. NeuROSrauma 21, 1396-1404.
  • Kadenbach, B. (2003). Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta, 1604, 77-94.
  • Kerbler, S. M., Taylor, N. L., & Millar, H. A. (2019). Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana. New Phytologist, 221, 1776-1788.
  • Kim, Y. H., Kim, M. D., Park, S. C., Yang, K. S., Jeong, J. C., Lee, H. S., & Kwak, S. S. (2011). SCOF-1-expressing transgenic sweet potato plants Show enhanced tolerance to low-temperature stress. Plant Physiol. Biochem. 49, 1436-1444.
  • Korde, A. S., Pettigrew, L. C., Craddock, S. D., & Maragos, W. F., (2005). The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia. J. Neurochem. 94, 1676–1684.
  • Kowaltowski, A. J., Castilho, R. F., & Vercesi, A. E. (2001). Mitochondrial permeability transition and oxidative stress. FEBS letters, 495(1-2), 12-15.
  • Kratsch, H. A., & Wise, R. R., (2000). The ultrastructure of chilling stress, Plant Cell Environ, 23, 337-350.
  • Lewis, T. L., & Workman, M. (1964). The effect of low temperature on phosphate esterification and cell membrane permeability in tomato fruit and cabbage leaf tissue. Aust. J. Biol. Sci. 17, 147-152.
  • Li, C. R., Liang, D. D., Xu, R. F., Li, H., Zhang, Y. P., Qin, R. Y., Li, L., Wei, P. C., & Yang, J. B. (2013) Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L. Genetics and Molecular Research, 12(4), 5424-5432.
  • Lieberman, M., Craft, C. C., Audia, W. V., & Wilcox, M. S. (1958). Biochemical Studies of Chilling Injury in Sweetpotatoes. Plant Physiol, 33(5), 307–311.
  • Mahajan, S., & Tuteja. N., (2005). Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys, 444, 139-158.
  • McIntosh, L., Eichler, G., Gray, G., Maxwell, D., Nickels, R., & Wang, Y., (1998). Biochemical and genetic controls exerted by plant mitochondria. Biochim Biophys Acta, (1365), 278-84.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-10.
  • Mutlu, S., (2009). Salisilik asidin arpada (Hordeum vulgare L.) soğuk toleransını sağlama ve apoplastik ile simplastik proteinler üzerine etkilerinin incelenmesi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Botanik Bilim Dalı,Doktora Tezi, 156 sy.
  • O’brien, T. A., Gomez, D. N., & Gennis, R. B., (1978). Complex Formation between the Uncoupler Carbonyl Cyanide p- Trifluoromethoxyphenylhydrazone (FCCP) and Valinomycin in the Presence of Potassium. The Journal of Biological Chemistry 253: 1749-1751.
  • O’Leary, B. M., & Plaxton, W. C. (2016). Plant Respiration. Els. DOI: 10.1002/9780470015902.a0001301.pub3. On snap bean fruits. Proc. Amer. Soc. Hort. Sci. 89, 368-374.
  • Racker, E. (1965). Mechanisms of bioenergetics, Academic Press, New York.
  • Saha, B., Borovskii, G., & Panda, S.K. (2016). Alternative oxidase and plant stress tolerance. Plant Signaling and Behavior 12, 11.
  • Skulachev, V. P. (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363, 100-124.
  • Vanlerberghe, G. C. (2013). Alternative oxidase: a mitochondrialrespiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 14(4), 6805-6847.
  • Vanlerberghe, G. C., & McIntosh, L., (1997). Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol., (48), 703-34.
  • Velikova, V., Yordanov, I., & Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci., 151, 59-66.
  • Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cuccovia, I. M., & Chaimovich, H. (1995). Pumping Plants. Nature 6526, 375-24.
  • Volkov, A. G., Deamer, D. W., Tanelian, D. L., Markin, V. S. (1998). Liquid Interfaces in Chemistry and Biology, Wiley, New York.
  • Volkov, A. G., & Mwesigwa, J., (2001). Electrochemistry of soybean: effect of uncouplers, pollutants, and pesticides. Journal of Electroanalytical Chemistry, 496, 153-157.
  • Wang, J., Rajakulendran, N., Amirsadeghi, S., & Vanlerberghea, G. C. (2011). Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature, Physiologia Plantarum, 142, 339-351.
  • Watada, A. E., & MoRas, L. L. (1966). Effect of chilling and non-chilling temperatures on snap bean fruits. Proc. Amer. Soc. Hort. Sci. 89, 368-374.
  • Yang, M. T., Chen, S. L., Lin, C. Y., & Chen, Y. M., (2005). Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings, Planta, 221, 374-385.
  • Zhou, D., & Solomos, T. (1998). Effect of hyPODia on sugar accumulation, respiration, activities of amylase and starch phosphorylase, and induction of alternative oxidase and acid invertase during storage of potato tubers (Solanum tuberosum cv. Russet Burbank) at 1°C. Physiologia Plantarum, 104(2), 255-265.