Effects of Long-Term Feeding with Dried Microalgae Added Microdiets on Growth and Fatty Acid Composition of Gilthead Sea Bream (Sparus aurata L., 1758)

Bu çalışmanın amacı, çipura (0,02±0,00 g) post larval ve ön büyütme döneminde 90 gün süresince balık yağı yerine farklı mikroalg ürünleri kullanılmasının, büyüme performansı ve yağ asidi kompozisyonuna olan etkilerinin incelenmesidir. Kontrol yeminde yağ kaynağı olarak sadece balık yağı kullanılmıştır; Tetraselmis suecica, Isochrysis sp., Nannochloropsis oculata ve Phaeodactylum tricornutum olmak üzere 4 mikroalg türünden oluşan SBAE® ticari ürünü içeren SBAE yemi; sadece mikroalg Schizocthytrium sp.'den oluşan ticari Algamac 3050 ürünü içeren Algamac yemi ve her iki ticari ürünün eşit oranlarda karışımını içeren Mix yem olmak üzere toplam dört farklı deney yemi kullanılmıştır. Besleme deneyi sonunda, en yüksek ağırlık kazanımı Kontrol (1,34±0,00 g) ve Mix deney (1,34±0,03 g) gruplarında gözlenmiştir (P

Kurutulmuş Mikroalg İçeren Mikrodiyetler ile Uzun Süreli Beslenmenin, Çipura (Sparus aurata, L.,1758)' larda Büyüme ve Yağ Asidi Kompozisyonuna Etkileri

The aim of the present study was to investigate the effects of replacing fish oil by different microalgae products on the growth performance and fatty acid composition of gilthead sea bream (0.02±0.00 g) during 90 days of post larvae and weaning period. Four diets were evaluated: control diet was exclusively based on fishoil; SBAE diet included the commercial product SBAE, which consists of four microalgae: Tetraselmis suecica, Isochrysis sp., Nannochloropsis oculata and Phaeodactylum tricornutum; Algamac diet included the commercial product Algamac 3050, which consists solely of the microalgae Schizocthytrium sp., and Mix diet that consisted of a mixture of both commercial products in equal amounts, SBAE and Algamac. At the end of the feeding trial, the highest weight gain was obtained in Control (1.34±0.00 g) and Mix (1.34±0.03 g) groups (P<0.05). The highest survival rates were found in Control and Mix diet groups, whereas the lowest was found in SBAE diet group. Experimental diets showed significant effects on the fatty acid composition of larvae. The total long-chain n-3 polyunsaturated fatty acid (LC-PUFA), eicosapentaenoic acid and docosahexaenoic acid levels were increased with inclusion of microalgae products. Based on the results of growth performance and fatty acid composition, fish oil substitution by a blend of equal amounts of microalgae products SBAE and Algamac 3050 seems to be promising in weaning diets for gilthead sea bream larvae.

___

  • AOAC. 1998a. Official method 980.46. Moisture in meat. Meat and meat products. In: Official Methods of Analysis of AOAC International. Ed. Soderberg, D.L. Gaitherbury, Maryland, USA.
  • AOAC. 1998b. Official method 955.04. Nitrogen (total) in seafood. Fish and other marine products. In: Official methods of analysis of AOAC International. Eds: James M. Hungerford & P. Cunniff. pp.6. ISBN 0- 54-4 and ISSN 1080-0344.
  • Abdul-Kader, Md., Koshio, S., Ishikawa, M., Yokoyama, S., Bulbul, M. 2010. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream Pagrus major. Aquaculture, :
  • Atalah, E., Hernández Cruz, C.M., Izquierdo, M.S., Rosenlund, G., Caballero, M.J., Valencia, A. and Robaina, L. 2007. Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture, 270: 178- doi:10.1016/j.aquaculture.2007.04.009
  • Bell, M.V., Betty, R.S., Dick, J.R., Fretwell, K., Navarro, J.C. and Sargent, J.R. 1995. Dietary deficiency of docosahexaneoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids, 30: 443-449. doi:10.1007/BF02536303
  • Bell, J.G., Henderson, R.J., Tocher, D.R., Mcghee, F., Dick, J.R., Porter, A., Smullen, R.P. and Sargent, J. 2002. Substituting Fish Oil with Crude Palm Oil in the Diet of Atlantic Salmon (Salmo salar) Affects Muscle Fatty Acid Composition and Hepatic Fatty Acid Metabolism. The Journal of Nutrition, 132: 222-230.
  • Bell, J.G., McEvoy, L.A., Estevez, A., Shields, R.J. and Sargent, J.R. 2003. Optimising lipid nutrition in first- feeding flatfish larvae. Aquaculture,227: 211-220. doi:10.1016/S0044-8486(03)00504-0
  • Bell, J.G., Pratoomyot, J., Strachan, F., Henderson, R.J., Fontanillas, R., Hebard, A., Guy, D.R., Hunter, D. and Tocher, D.R. 2010. Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils. Aquaculture, doi:10.1016/j.aquaculture.2010.05.021 232.
  • Bessonart, M., Izquierdo, M.S., Salhi, M., Hernandez-Cruz, C.M., Gonzalez, M.M. and Fernandez-Palacios H. Effect of dietary arachidonic acid levels on growth and fatty acid composition of gilthead seabream (Sparusaurata L.) larvae. Aquaculture 179, -275.doi:10.1016/S0044-8486(99)00164-7
  • Bransden, M.P., Carter, C.G. and Nichols, P.D. 2003. Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition and disease resistance. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135: 625.doi:10.1016/S1096-4959(03)00143-X
  • Castillo, C.E., Gapasin, R.S. and Leano, E.M. 2009. Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. doi:10.1016/j.aquaculture.2009.04.008
  • Christie W.W. (1982) Lipid Analysis. Pergamon Press, Oxford, UK.
  • Cruz-García, L., Sánchez-Gurmaches, J., Bouraoui, L., Saera-Vila, A., Pérez-Sánchez, J., Gutiérrez, J. and Navarro, I. 2011. Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology Part A: Molecular and Integrative 1016/j.cbpa.2010.11.024. : 399.doi:
  • Eroldoğan, T., Tuchini, G. M., Yılmaz, A. H., Taşbozan, O., Engin, K., Ölçülü, A., Özşahinoğlu, I. and Mumo, P. Potential of cottonseed oil as fish oil replacer in European sea bass feed formulation. Turkish Journal of Fisheries and Aquatic Sciences, 12(4). DOI: 4194/1303-2712-v12_4_07
  • Eryalçın, K.M., Roo, J., Saleh, R., Atalah, E., Benitez, T., Betancor, M.,Hernandez-Cruz, M.C. and Izquierdo, M.S. 2013. Fishoil replacement by different microalgal products in microdiets for earlyweaning of giltheadseabream (Sparusaurata, L.). Aquaculture Research, 2012.03237.x 1111/j.1365
  • FAO. The State of World Fisheries and Aquaculture, 2012. Food and Agriculture Organization of the United Nations (FAO). Fishers and Aquaculture Department, Rome, Italy 209 pp.
  • Folch, J.L., Lees, M. and Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226: 497-509.
  • Fountoulaki, E., Vasilaki, A., Hurtado, R., Grigorakis, K., Karacostas, I., Nengas, I., Rigos, G., Kotzamanis, Y., Venou, B. and Alexis, M.N. 2009. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile. doi:10.1016/j.aquaculture.2009.01.023 :
  • Ganga, R., Bell, J.G., Montero, D., Robaina, L., Caballero, M. J. and Izquierdo, M.S. 2005. Effect of dietary lipids on plasma fatty acid profiles and prostaglandin and leptin production in gilthead seabream (Sparus aurata).Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(4): 418.doi:10.1016/j.cbpb.2005.09.010
  • Ganuza, E. and Izquierdo, M.S. 2007. Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. AppliedMicrobiology Biotechnology,76: 985- doi: 10.1007/s00253-007-1019-4
  • Ganuza, E., Benitez-Santana, T., Atalah, E., Vega-Orellana, and O., Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture, : 109-116. doi:10.1016/j.aquaculture.2008.02.005
  • Glencross, B.D., Hawkins, W.E., Curnow, J.G. 2003. Evaluation of canola oils as alternative lipid resources in diets for juvenile red seabream, Pagrusauratus. Aquaculture 1046/j.1365-2095.2003.00257.x :305-315.doi:
  • Güler, M. and Yıldız, M. 2011. Effects of dietary fish oil replacement by cottonseed oil on growth performance and (Oncorhynchus mykiss). Turkish Journal of Veterinary and Animal Science, 35: 157-167.doi:10.3906/vet- 252 of rainbowtrout
  • Harel, M., Koven, W., Lein, I., Bar, Y., Behrens, P., Stubblefield, J., Zohar, Y., Place, A.R. 2002. Advanced DHA, EPA and ARA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture, 213: 347-362. doi:10.1016/S0044- (02)00047-9
  • Hemaiswarya, S., Raja, R., Ravi Kumar, R., Ganesan, V. and Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27:1737-1746. doi: 1007/s11274-010-0632-z
  • Huang, S.S.Y., Oo, A.N., Higgs, D.A., Brauner, C.J. and Satoh, S. 2007. Effect of dietary canola oil level on the growth performance and fatty acid composition of juvenile Aquaculture,271: Pagrus major.
  • IUPAC (1987). Standart Methods for The Analysis of Oils, Fats and Derivatives. 6th Edition (Fifth Edition Method II.D.19), Pergamon Press, Oxford, 96-102.
  • Izquierdo, M.S., Watanabe, T., Takeuchi, T., Arakawa, T. and Kitajima, C. 1990. Optimal EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major). In: M. Takeda and T. Watanabe (Editors), The Current Status of Fish Nutrition in Aquaculture. Tokyo University of Fisheries, Tokyo, pp. 22l-232.
  • Izquierdo, M.S., Socorro, J., Arantzamendi, L., Hernandez- Cruz, C.M. 2000. Recent Advances in Lipid Nutrition in Fish Larvae. Fish Physiology and Biochemistry, 22: 107. doi:10.1023/A:1007810506259
  • Izquierdo, M.S., Fernandez-Palacios, H. and Tacon, A.G.J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197(1): 25-42. doi:10.1016/S0044-8486(01)00581-6
  • Izquierdo, M.S. and Fernandez-Palacios, H. 1997. Nutritional Requirements of marine fish larvae and broodstock. Cah Options Mediterranean, 22: 243-264.
  • Izquierdo, M.S. 2005. Essential Fatty Acid Requirements of Marine Fish Larvae and Broodstock.Cah Options Mediterranean, 22: 243-264.doi: 10.1111/j.1365- 1996.tb00058.x
  • Izquierdo, M. S., Montero, D., Robaina, L., Caballero, M. J., Rosenlund, G. and Ginés, R. 2005. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1), doi:10.1016/j.aquaculture.2004.12.001 444.
  • Izquierdo, M.S. and Koven, W.M. 2011. Lipids. In: Larval Fish Nutrition (Holt, J. ed.), pp. 47-82. Wiley- Blackwell, John Wiley and Sons Publisher Editor, Oxford, UK.
  • Koven, W., Kolkovski, S., Hadas, E., Gamsiz, K. and Tandler, A. 2001. Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review. Aquaculture, 194(1), doi:10.1016/S0044-8486(00)00501-9 121.
  • Kyle, D.J. and Gladue, R.M. 1991. Eicosapentaenoic acids and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO 91/14427, October 3, 1991.
  • Kyle, D.J., Sicotte, V.J., Singer, J.J. and Reeb, S.E. 1992. Bioproduction of docosahexaenoic acid (DHA) by microlagae, In Industrial Applications of Single Cell Oils. Edited by D. J. Kyle and C. Ratledge, American Oil Chemists' Society, Champaign, IL. pp. 287-300.
  • Kyle, D.J., Reeb, S.E. and Sicotte, V.J. 1996. U.S. Patent No. 5,492,938. Washington, DC: U.S. Patent and Trademark Office.
  • Lazo, J.P., Dinis, M.T., Holt, G.J., Faulk, C. and Arnold, C.R. 2000. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus).Aquaculture, 188(3), doi:10.1016/S0044-8486(00)00339-2 351.
  • Lewis, T.E., Nichols, P.D. and McMeekin, T.A. 1999. The Potential Biotechnological Marine doi:10.1007/PL00011813 of Thraustochytrids. : Biotechnology, 587.
  • Li, H.M., Robinson, H.E., Tucker, C.S., Manning, B.B. and Khoo, L. 2009. Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish (Ictalurus punctatus). Aquaculture, 292: 232- doi:10.1016/j.aquaculture.2009.04.033
  • Liu J., Caballero M.J., Izquierdo M.S., El-Sayed-Ali T., Hernandez-Cruz C.M., Valencia A. and Fernandez- Palacios H. 2002. Necessity of dietary lecithin and eicosapentaenoic acid for growth, survival, stress resistance and lipoprotein formation in gilthead seabream (Sparusaurata). Fisheries Science 68, 1165- doi: 10.1046/j.1444-2906.2002.00551.x
  • Martins, D.A., Custodio, L., Barreira, L., Pereira, H., Ben- Hamadou, R., Varela, J. and Abu-Salah, K.M. 2013. Alternative pollyunsaturated fatty acids in marine microalgae. Marine doi:10.3390/md11072259 of n-3 Long-chain Drugs, : 2281.
  • Merida, S.N., Tomas-Vidal, A., Martinez-Llorens, S., Cerda and M.J. 2010. Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: Amino acid retention, gut and liver histology. Aquaculture, doi:10.1016/j.aquaculture.2009.10.025 :
  • Miller, M.R., Nichols, P.D. and Carter, C.G. 2007. Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comparative Biochemistry and Physiology- doi:10.1016/j.cbpa.2007.05.018 A, :
  • Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M.J. and Izquierdo, M.S. 2003. Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture 225: 353- doi:10.1016/S0044-8486(03)00301-6
  • Montero, D., Grasso, V., Izquierdo MS, Ganga, R., Real, F., Tort, L., Caballero, M.J. and Acosta, F. 2008. Total substitution of fish oil by vegetable oils in gilthead sea bream (Sparus aurata) diets: effects on hepatic Mx expression and some immune parameteres. Fish and Shellfish doi:10.1016/j.fsi.2007.08.002 :
  • Montero, D., Mathlouthi, F., Tort, L., Afonso, J. M., Torrecillas, S., Fernández-Vaquero, A., Negrin, D. and Izquierdo, M.S. 2010. Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata. Fish &Shellfish Immunology, doi:10.1016/j.fsi.2010.08.024 (6):
  • Mourente, G., and Bell, J.G. 2006. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 145(3), 389- doi:10.1016/j.cbpb.2006.08.012
  • Mustafa, M.G., Wakamatsu, S., Takeda, T., Umino, T., Nakagawa, H. 1995. Effects of Algae as Meal as Feed Additive on Growth, Feed Efficieny and Body Composition in Red Sea Bream. Fisheries Science, : 25-28.http://doi.org/10.2331/fishsci.6125
  • Navarro, N. and Sarasquete, C. 1998. Use of freeze-dried microalgae for rearing gilthead seabream, Sparus aurata, larvae I. Growth, histology and water quality. Aquaculture, (98)00311-1
  • Peng, S., Chen, L., Qin, J. G., Hou, J., Yu, N., Long, Z., Ye, J. and Sun, X. 2008. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, schlegeli. Aquaculture, 276(1), doi:10.1016/j.aquaculture.2008.01.035 161.
  • Pickova, J. and Morkore, T. 2007. Alternate Oils in Fish Feeds. European Journal Lipid Science Technology, : 256-263. doi: 10.1002/ejlt.200600222
  • Piedecausa, M.A., Mazon,M.J., Garcia Garcia, B., Hernandez, M.D. 2007. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture, 263:211- doi:10.1016/j.aquaculture.2006.09.039
  • Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and 1007/s00253-004-1647-x : 648. doi:
  • Qiao, H., Wang, H., Song, Z., Ma, J., Li, B., Liu, X., Zhang, S., Wang, J. and Zhang, L. 2014. Effects of dietary fish oil replacement by microalgae raw materials on growth performance, body composition and fatty acid profile of juvenile olive flounder, Paralichthys olivaceus. Aquaculture Nutrition, 20: 646-653. doi: 1111/anu.12127
  • Ratledge, C. 2001. Microorganisms as sources of polyunsaturated fatty acids. In: Gunstone, F.D. (Eds.). Structured and modified lipids. Dekker, New York. pp. 351-399. C.
  • Ratledge,C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11): 807-815. doi:10.1016/j.biochi.2004.09.017
  • Ricker, W.E. 1979. Growth Rates and Models. W.S Hoar, D.J. Randall and J.R. Brett (Eds.) Fish Physiology, Vol.8. Academic Press, New York: XVII+786 pp.
  • Robin, J.H. and Vincent, B. 2003. Microparticulate diets as first food for gilthead sea bream larva (Sparus aurata): Aquaculture, 225: 463-474. doi:10.1016/S0044- (03)00310-7 acid incorporation.
  • Rodriguez, C., Perez, J.A., Diaz, M., Izquierdo, M.S., Fernandez-Palacios, H., Lorenzo, A. 1997. Influence of the EPA/DHA Ratio in Rotifers on Gilthead Sea Bream Aquaculture, (96)01472-X Larval Development. : 89.doi:10.1016/S0044
  • Saleh, R., Betancor, M.B., Roo, J., Hernandez-Cruz, C.M., Moyano, F.J. and Izquierdo, M. 2013. Optimum soybean lecithin contents in microdiets for gilthead seabream Nutrition, 19(4), 585-597. DOI: 10.1111/anu.12009
  • Salhi, M., Izquierdo, M.S., Hernandez-Cruz, C.M., Socorro, J. and Fernandez-Palacios, H. 1997. The improved incorporation of polyunsaturated fatty acids and changes in liver structure in larval gilthead seabream fed on microdiets. Journal of Fish Biology, 51(5), 879. 10.1111/j.1095-8649.1997.tb01526.x
  • Sargent, J.R., Mcevoy, L. and Bell, G. 1997. Requirements, Presentation and Sources of Polyunsaturated Fatty Acids in Marine Fish Larval Feeds. Aquaculture, 155: 127.doi:10.1016/S0044-8486(97)00122-1
  • Sargent, J.R., Tocher, D.R. and Bell, J.G. 2002. The Lipids. In: Halver, J. E. & R. W. Hardy (Eds.). Fish Nutrition. Academic Press, San Dieago, CA, USA. Pp. 181-257.
  • Şener, E., Yıldız, M. and Savaş, E. 2006. Effect of Vegetable Protein and Oil Supplementation on Growth Performance and Body Composition of Russian Sturgeon Juveniles (Acipenser gueldenstaedtii Brandt, 1833) at low temperatures. Turkish Journal of Fisheries and Aquatic Sciences, 6: 23-27
  • Sprague, M., Walton, J., Campbell, P.J., Strachan, F., Dick, J.R., and Bell, J.G. 2015. Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts. Food Chemistry,185: 413- doi:10.1016/j.foodchem.2015.03.150
  • Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 2: 87- doi:10.1263/jbb.101.87
  • Swaaf, M.E. de2003. Docosahexaenoic acid production by the marine alga Crypthecodinium cohnii. Ph.D., Technical University Delft, Delft.
  • Tacon, A.G. and Metian, M. 2008. Aquaculture feed and food safety. Annals of the New York Academy of Sciences, 1140(1), DOI: 10.1196/annals.1454.003 59.
  • Turchini, G.M.,Torstensen, B.E. and Ng, W.K. 2009. Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 2008.01001.x doi: 1111/j.1753
  • Tocher, D.R. and Ghioni, C. 1999. Fatty acid metabolism in sea bream (Sparus aurata) cells. Lipids, 34: 433-440. doi:10.1007/s11745-999-0382-8
  • Tocher, D.R. and Harvie, D.G. 1988. Fatty acid compositions of the major phosphoglycerides from fish neural tissues; (n-3) and (n-6) pollyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiology and doi:10.1007/BF01874800 : 239.
  • Van Anholt R.D., Koven W.M., Lutzky S. and WendelaarBonga S.E. 2004. Dietary supplementation with arachidonic acid alters the stress response of gilthead Aquaculture, doi:10.1016/j.aquaculture.2004.06.001 larvae. -383.
  • Wassef, E. A., Saleh, N. E., & El-Hady, H. A. E. A. 2009. Vegetable oil blend as alternative lipid resources in diets Aquaculture International, 17(5), 421-435. DOI: 1007/s10499-008-9213-7 Sparus aurata.
  • Watanabe T., Izquierdo M.S., Takeuchi T., Satoh S. and Kitajima C. 1989. Comparison between eicosapentanoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red seabream. Nippon Suisan Gakkaishi, 55: 1635-1640. doi:10.2331/suisan.55.1635
  • Yildiz,M. and Şener, E. 2004. The effect of dietary oils of vegetable origin on the performance, body composition and fatty acid profiles of sea bass (Dicentrarchus labrax L., 1758) juveniles. Turkish Journal of Veterinary and Animal Sciences, 28(3): 553-562.
  • Zambonino-Infante, J.L. and Cahu, C.L. 2010. Effect of nutrition on marine fish development and quality.Recent Advances in Aquaculture Research Transworld Research Network, Kerala, India, 103-124.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Structural and Economic Analysis of Turkish Fishmeal and Fish Oil Industry

Vedat CEYHAN, Murat EMİR

Effects of Temperature, Fish Size and Dosageof Clove Oil on Anaesthesiain Turbot (Psetta maximaLinnaeus, 1758)

lhan AYDIN, Bilal AKBULUT, Ercan KÜÇÜK, Metin KUMLU

Selectivity and Catch Efficiency of Three Spinner Hook Sizes in Angling for Rainbow Trout (Oncorhynchus mykissWalbaum, 1792) in Karakaya Dam Lake (Eastern Turkey

TUNCAY ATEŞŞAHİN, ERDAL DUMAN, Mehmet CİLBİZ

Indicator Based Ecological Health Analysis Using Chlorophyll and Sea Surface Temperature Along with Fish Catch Data off Mumbai Coast

Samee AZMİ, Yogesh AGARWADKAR, Mohor BHATTACHARYA, Mugdha APTE, Arun INAMDAR

Studies on Induction of Nuclear Abnormalities in Peripheral Blood Erythrocytes of Fish Exposed to Copper

Safina KOUSAR, Muhammad JAVED

Effectsof Dietary Supplementation of Herbal OilsContaining1,8-cineole, Carvacrol or Pulegone on Growth Performance, Survival, Fatty Acid Composition, andLiver and Kidney Histology of Rainbow Trout (Oncorhynchus mykiss) Fingerlings

ADEM YAVUZ SÖNMEZ, SONER BİLEN, MEVLÜT ALBAYRAK, SEVDAN YILMAZ, Gouranga BISWAS, Olcay HİSAR, Talat YANIK

Fish Fauna of Çoruh River and Two First Record for Turkey

Received JUNE, Accepted NOVEMBER, Bella JAPOSHVILI

Effect of Environmental Conditions on Spatial Distribution of Macrobenthic Community in the Bushehr Coasts of the Persian Gulf

Parham FARSI, Jafar SEYFABADİ, Fereidoon OWFI, Mohammad Sadegh ARAMLI

Stocking of Common Carp (Cyprinus carpio) into Some Newly-Established Reservoirs of North-West Anatolia May Enhance the Spread of Non-Native Fish

ÖZCAN GAYGUSUZ, Ali Serhan TARKAN, Hamdi AYDIN, ZEYNEP DORAK, Nildeniz TOP, Uğur KARAKUŞ, Lorenzo VILIZZI

Effects of Chitosan Treatment on the Quality Parameters of Shrimp (Parapenaeus longirostris) during Chilled Storage

ENVER BARIŞ BİNGÖL, KAMİL BOSTAN, CANDAN VARLIK, HARUN URAN, DİDEM ÜÇOK ALAKAVUK, NÜKET SİVRİ