Estimating genome size and confirming ploidy levels of wild tetraploid alfalfa accessions (Medicago sativa subsp. × varia) using flow cytometry

Estimating genome size and confirming ploidy levels of wild tetraploid alfalfa accessions (Medicago sativa subsp. × varia) using flow cytometry

The taxonomic group Medicago sativa-falcata continuum includes the important cultivated forage legume, alfalfa, along with a number of other perennial, outcrossing, and morphologically differentiated subspecies at diploid and tetraploid levels. Prior information of morphology, ploidy, and genome size is vital for accurate classification of the taxa included in the complex and thus for effective usage of genetic resources in alfalfa breeding programs. The United States Department of Agriculture-National Plant Germplasm System (USDAGRIN) has an extensive collection of the members of Medicago sativa-falcata continuum gathered from all the centres of diversity. However, accessions classified in the complex are occasionally misidentified. Furthermore, the accessions identified as M. sativa subsp. ×varia (T. Martyn) Arcang. in the USDA GRIN collections have not been evaluated based on morphological traits, ploidy level or genome size. In this study, we evaluated morphological traits and determined ploidy levels and genome size of plants from 25 wild accessions classified as Medicago sativa L. subsp. ×varia using flow cytometry. All of the accessions classified as subsp. ×varia were found to be tetraploid; however, deviations from flower colour, pod shape expectations were observed. This will be a major step toward effective utilization of germplasm resources classified as M. sativa subsp. ×varia.

___

  • Arumuganathan, K., E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter. 9 (3):208-218.
  • Barnes, D.K., 1972. A system for visually classifying alfalfa flower color. USDA-ARS Agric. Handbook No. 424. U.S. Gov. Print. Office, Washington, DC.
  • Blondon, F., D. Marie, S. Brown, A. Kondorosi, 1994. Genome size and base composition in Medicago sativa and M. truncatula species. Genome. 37(2): 264-270.
  • Brummer, E.C., P.M. Cazcarro, D. Luth, 1999. Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop Science. 39(4):1202.
  • De Laat, A.M.M., W. Göhde, M. Vogelzang. 1987. Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breed. 99:303-307.
  • Dolezel, J., J. Bartos, 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany. 95(1):99-110.
  • Gaeta, R.T., J. C. Pires, F. Iniguez-Luy, E. Leon, T.C. Osborn, 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell. 19(11): 3403-3417.
  • Galbraith, D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, D.P. Sharma, E. Firoozabady, 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 220:1049-1051.
  • Grant, V., 1971. Plant Speciation. Columbia University Press. New York.
  • Greilhuber, J., 1986. Severely distorted Feulgen DNA amounts in Pinus (Coniferophytina) after nonadditive fixations as a result of meristematic self-tanning with vacuole contents. Canadian Journal of Genetics and Cytology. 28: 409–415.
  • Greilhuber, J., 1988. ‘Self-tanning’—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Systematics and Evolution. 158: 87–96.
  • Greilhuber, J., 2005. Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany. 95: 91–98.
  • Hanson, L., R.L. Brown, A. Boyd, M.A.T. Johnson, M.D. Bennett, 2003. First nuclear DNA C-values for 28 Angiosperm genera. Annals of Botany. 91: 31–38.
  • Havananda, T., E.C. Brummer, I.J. Maureira-Butler, J.J. Doyle, 2010. Relationships among diploid members of the Medicago sativa (Fabaceae) species complex based on chloroplast and mitochondrial DNA sequences. Systematic Botany. 35(1): 140-150.
  • Ivanov, A.I.,1988. Alfalfa. Amerind Publishing Co. New Delhi.
  • Leitch, I.J., M.D. Bennett, 1997. Polyploidy in angiosperms. Trends in Plant Science. 2(12):470-476.
  • Lesins, K.A., I. Lesins, 1982. Genus Medicago (Leguminosae), a taxogenetic study. Plant Ecology. 50(2): 92-92.
  • Quiros, C.F., G.R. Bauchan, 1988. The genus Medicago and the origin of the Medicago sativa complex. In: Hanson A.A., Barnes D.K., Hill R.R. (eds), Alfalfa and alfalfa improvement. ASA-CSSA-SSSA, Madison, WI.
  • Sakiroglu, M., J.J. Doyle, E.C. Brummer, 2010. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theoretical and Applied Genetics. 121(3): 403-415.
  • Sakiroglu, M., E.C. Brummer, 2011. Clarifying the ploidy of some accessions in the USDA alfalfa germplasm collection. Turkish Journal of Botany. 35:509-519.
  • Sakiroglu, M., E.C. Brummer, 2012. Presence of phylogeographic structure among wild diploid alfalfa accessions (Medicago sativa L. subsp. microcarpa Urb.) with evidence of the center of origin. Genetic Resources and Crop Evolution (in print).
  • Sinskaya, E.N., 1961. Flora of Cultivated Plants of the USSR: XIII. Perennial Leguminous Plants. (Part 1, translated 1961.) Israel Program of Scientific Translations, Jerusalem.
  • Small, E., 1985. Morphological differentiation in Medicago sativa s. l. in relation to ploidy. Canadian Journal of Botany. 63:1747–1752.
  • Small, E., M. Jurzysta, C. Nozzolillo, 1990. The evolution of hemolytic saponin content in wild and cultivated alfalfa (Medicago sativa, Fabaceae). Economic Botany. 44:226- 235.
  • Swift, H., 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA. 36(11): 643–654.
  • Tuna, M., K.P. Vogel, K. Arumuganathan, K.S. Gill, 2001. DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science. 41(5):1629.
  • Wang, J., L. Tian, H. Lee, N.E. Wei, H. Jiang, B. Watson, A. Madlung, T.C. Osborn, R.W. Doerge, L. Comai, Z. J. Chen, 2006. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 172(1): 507-517.