The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites

The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites

One of the significant problems of our time and future is environmental pollution. There are many factors that cause environmental pollution and the main concerns are waste material. Since production, consumption and service activities have increased with rapid industrialization and increasing population. Waste assessment is a process that includes minimization, separate collection at source, intermediate storage, pre-treatment, the establishment of waste transfer centers, recovery and disposal when necessary, which are qualified as outputs as a result of activities such as production, application and consumption. The purpose of waste assessment is to ensure the process of wastes generated by human action without harming the environment and human health. In this context, re-evaluation of agricultural and aquaculture products that turn into waste after being used as a product is important both in terms of economic and environmental pollution. Herein, the use of cumin black pulp, which is waste at the end of black seed oil production, as a bio-based filler material in ethylene-propylene diene rubber (EPDM) was examined. Accordingly, the effects of cumin black pulp added to the EPDM matrix at different content on the rheological, mechanical and crosslinking degree of EPDM were determined. With the use of 10 phr cumin black pulp, the mechanical and rheological properties of EPDM and the degree of crosslinking increased. The tensile strength and elongation at break of the EPDM/CB composites increased up to 11 MPa and 480% with the addition of 10 phr CB, respectively. In addition, it was revealed that the vulcanization parameters were also enhanced. Consequently, it has been concluded as a result of the analysis that the waste cumin black pulp can be used as a filling material in the EPDM matrix. Thus, it has been seen that a product in the state of waste can be recovered and become an economic value.

___

  • 1. Vijayaram, T. R. (2009). A technical review on rubber. International Journal on Design and Manufacturing Technologies, 3(1), 25-37.
  • 2. Wang, G., Li, A., Zhao, W., Xu, Z., Ma, Y., Zhang, F., ... & He, Q. (2021). A review on fabrication methods and research progress of superhydrophobic silicone rubber materials. Advanced Materials Interfaces, 8(1), 2001460. https://doi.org/10.1002/admi.202001460
  • 3. Shit, S. C., & Shah, P. (2013). A review on silicone rubber. National academy science letters, 36(4), 355-365. https://doi.org/10.1007/s40009-013-0150-2
  • 4. Güngör, A., Akbay, I. K., & Özdemir, T. (2019). EPDM rubber with hexagonal boron nitride: A thermal neutron shielding composite. Radiation Physics and Chemistry, 165, 108391. https://doi.org/10.1016/j.radphyschem.2019.108391
  • 5. Da Maia, J. V., Pereira, F. P., Dutra, J. C. N., Mello, S. A. C., Becerra, E. A. O., Massi, M., & da Silva Sobrinho, A. S. (2013). Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas. Applied surface science, 285, 918-926. https://doi.org/10.1016/j.apsusc.2013.09.013
  • 6. Legge, N. R. (1987). Thermoplastic elastomers. Rubber Chemistry and Technology, 60(3), 83-117. https://doi.org/10.5254/1.3536141
  • 7. Ginder, J. M., Nichols, M. E., Elie, L. D., & Tardiff, J. L. (1999, July). Magnetorheological elastomers: properties and applications. In Smart Structures and Materials 1999: Smart Materials Technologies (Vol. 3675, pp. 131-138). SPIE. https://doi.org/10.1117/12.352787
  • 8. Suo, Z. (2010). Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6), 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9
  • 9. Heinrich, G., Klüppel, M., & Vilgis, T. A. (2002). Reinforcement of elastomers. Current opinion in solid state and materials science, 6(3), 195-203. https://doi.org/10.1016/S1359-0286(02)00030-X
  • 10. Datta, R. N. (2008). Rubber-curing systems. In Current Topics in Elastomers Research (pp. 415-462). CRC Press. https://doi.org/10.1201/9781420007183-14
  • 11. Kruželák, J., Sýkora, R., & Hudec, I. (2017). Vulcanization of rubber compounds with peroxide curing systems. Rubber chemistry and technology, 90(1), 60-88. https://doi.org/10.5254/RCT.16.83758
  • 12. Greene, J. P. (2021). Elastomers and Rubbers. Automotive Plastics and Composits; Elsevier: Amsterdam, The Netherlands, 127-147. https://doi.org/10.1016/b978-0-12-818008-2.00016-7
  • 13. Stelescu, M. D., Manaila, E., & Craciun, G. (2013). Vulcanization of ethylene‐propylene–terpolymer‐based rubber mixtures by radiation processing. Journal of Applied Polymer Science, 128(4), 2325-2336. https://doi.org/10.1002/app.38231
  • 14. Akbay, İ. K., Güngör, A., & Özdemir, T. (2017). Optimization of the vulcanization parameters for ethylene–propylene–diene termonomer (EPDM)/ground waste tyre composite using response surface methodology. Polymer Bulletin, 74, 5095-5109. https://doi.org/10.1007/S00289-017-2001-7
  • 15. Ravishankar, P. S. (2012). Treatise on EPDM. Rubber chemistry and technology, 85(3), 327-349. https://doi.org/10.5254/rct.12.87993
  • 16. Abdul Salim, Z. A. S., Hassan, A., & Ismail, H. (2018). A review on hybrid fillers in rubber composites. Polymer-Plastics Technology and Engineering, 57(6), 523-539. https://doi.org/10.1080/03602559.2017.1329432
  • 17. Zhang, Y., Ge, S., Tang, B., Koga, T., Rafailovich, M. H., Sokolov, J. C., ... & Nguyen, D. (2001). Effect of carbon black and silica fillers in elastomer blends. Macromolecules, 34(20), 7056-7065. https://doi.org/10.1021/MA010183P
  • 18. Wang, M. J., Gray, C. A., Reznek, S. A., Mahmud, K., & Kutsovsky, Y. (2003). Carbon black. Kirk‐Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0301180204011414.a01.pub2
  • 19. Chaudhuri, I., Fruijtier-Pölloth, C., Ngiewih, Y., & Levy, L. (2018). Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Critical reviews in toxicology, 48(2), 143-169. https://doi.org/10.1080/10408444.2017.1391746
  • 20. Di Ianni, E., Jacobsen, N. R., Vogel, U. B., & Møller, P. (2022). Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. Mutation Research/Reviews in Mutation Research, 108441. https://doi.org/10.1016/J.MRREV.2022.108441
  • 21. Mokhothu, T. H., John, M. J., & John, M. J. (2016). Bio-based fillers for environmentally friendly composites. Handbook of Composites from Renewable Materials; Vijay, KT, Manju, KT, Michael, RK, Eds, 243-270. https://doi.org/10.1002/9781119441632.ch10
  • 22. Butt, M. S., & Sultan, M. T. (2010). Nigella sativa: reduces the risk of various maladies. Critical reviews in food science and nutrition, 50(7), 654-665. https://doi.org/10.1080/10408390902768797
  • 23. Hanafy, M. S. M., & Hatem, M. E. (1991). Studies on the antimicrobial activity of Nigella sativa seed (black cumin). Journal of ethnopharmacology, 34(2-3), 275-278. https://doi.org/10.1016/0378-8741(91)90047-H
  • 24. Ahmad, A., Husain, A., Mujeeb, M., Khan, S. A., Najmi, A. K., Siddique, N. A., ... & Anwar, F. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific journal of tropical biomedicine, 3(5), 337-352. https://doi.org/10.1016/S2221-1691(13)60075-1
  • 25. Nergiz, C., & Ötleş, S. (1993). Chemical composition of Nigella sativa L. seeds. Food chemistry, 48(3), 259-261. https://doi.org/10.1016/0308-8146(93)90137-5
  • 26. Akiba, M. A., & Hashim, A. S. (1997). Vulcanization and crosslinking in elastomers. Progress in polymer science, 22(3), 475-521. https://doi.org/10.1016/S0079-6700(96)00015-9
  • 27. Coran, A. Y. (2003). Chemistry of the vulcanization and protection of elastomers: A review of the achievements. Journal of Applied Polymer Science, 87(1), 24-30
  • 28. Smith, T. L. (1963). Ultimate tensile properties of elastomers. I. Characterization by a time and temperature independent failure envelope. Journal of Polymer Science Part A: General Papers, 1(12), 3597-3615. https://doi.org/10.1002/POL.1963.100011207
  • 29. Smith, T. L. (1964). Ultimate tensile properties of elastomers. II. Comparison of failure envelopes for unfilled vulcanizates. Rubber Chemistry and Technology, 37(4), 792-807. https://doi.org/10.5254/1.3540378
  • 30. Ermilov, A. S., & Nurullaev, E. M. (2012). Mechanical properties of elastomers filled with solid particles. Mechanics of composite Materials, 48(3), 243-252. https://doi.org/10.1007/S11029-012-9271-9