A review of friction stir welding parameters, process and application fields

A review of friction stir welding parameters, process and application fields

It is important to join materials for systems that require high-performance and to minimize the defects that may occur during this joining. Welding is the most common way for joining materials but for lightweight and similar/ dissimilar materials, Friction Stir Welding preferable for its high-performance joining properties. Lightweight and durable materials such as aluminum alloys are widely used in sectors such as defense industry, aerospace industry, automotive industry, and high-speed train manufacturing. Some of these materials cannot be welded by conventional methods due to their high thermal conductivity and low melting point. In welding processes, material properties are expected to be as close as possible to base material. Friction stir welding (FSW) is a joining method that provides welding below the melting point of materials that cannot be welded by conventional methods or where the welding process causes the mechanical structure of the material to deteriorate. In this study, Friction Stir Welding process, advantages and disadvantages and application fields of Friction Stir Welding were examined.

___

  • Kutz, M. (2006). Materials and Mechanical Design. John Wiley & Sons.
  • Kumar, N., Mishra, R. S., & Yuan, W. (2015). Friction stir welding of dissimilar alloys and materials. Butterworth-Heinemann.
  • Norrish, J. (1992). Advanced welding processes. Springer Science & Business Media. https://doi.org/10.1533/9781845691707.218
  • Cooper, D. R., & Allwood, J. M. (2014). The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength. Journal of Materials Processing Technology, 214(11), 2576-2592. https://doi.org/10.1016/j.jmatprotec.2014.04.018
  • Duarte, A., Queirós, G. W., Sanchez, L. G., de Salazar, J. M. G., & Portal, A. J. C. (2018). Welding by Hot Forging of Two Carbon Steels for the Manufacture of Spanish and Japanese Weapons. Journal of Material Sciences & Engineering, 7(446), 2169-0022.
  • Djurdjanovic, M. B., Mijajlovic, M. M., Milcic, D. S., & Stamenkovic, D. S. (2009). Heat generation during friction stir welding process. Tribology in industry, 31(1&2), 8.
  • Verma, S., Kumar, V., Kumar, R., & Sidhu, R. S. (2022). Exploring the application domain of friction stir welding in aluminum and other alloys. Materials Today: Proceedings, 50, 1032-1042. https://doi.org/10.1016/j.matpr.2021.07.449
  • Singh, K., Singh, G., & Singh, H. (2019). Microstructure and mechanical behaviour of friction-stir-welded magnesium alloys: As-Welded and post weld heat treated. Materials Today Communications, 20, 100600. https://doi.org/10.1016/j.mtcomm.2019.100600
  • Singh, K., Singh, G., & Singh, H. (2019). Investigation on the microstructure and mechanical properties of a dissimilar friction stir welded joint of magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(12), 2444–2454. https://doi.org/10.1177/1464420719865292
  • Cakan, A., Ugurlu, M., & Kaygusuz, E. (2019). Effect of weld parameters on the microstructure and mechanical properties of dissimilar friction stir joints between pure copper and the aluminum alloy AA7075-T6, 61(2), 142–148. https://doi.org/10.3139/120.111297
  • Singh, K., Singh, G., & Singh, H. (2021). Influence of post welding heat treatment on the microstructure and mechanical properties of friction stir welding joint of AZ31 Mg alloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(5), 1375–1382. https://doi.org/10.1177/0954408921997626
  • Wang, T., Feng, Z., & Wang, R. (2022). Study on Friction Stir Welding and Heat Treatment of 7050 Aluminum Alloy. In B. Duan, K. Umeda, & C. Kim (Eds.), Proceedings of the Eighth Asia International Symposium on Mechatronics (pp. 196–202). Singapore: Springer Nature Singapore.
  • Prasad, K. A., Chand, A. A., Kumar, N. M., Narayan, S., & Mamun, K. A. (2022). A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs. Sustainability, 14(4), 2354. https://doi.org/10.3390/su14042354
  • Singh, K., Singh, G., & Singh, H. (2022). The influence of holding time on the characteristics of friction stir welded dissimilar magnesium alloy joints during post welding heat treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207221106576. https://doi.org/10.1177/14644207221106576
  • Su, M., Qi, X., Xu, L., Feng, Q., Han, Y., & Zhao, L. (2022). Microstructural and mechanical analysis of 6063-T6 aluminum alloy joints bonded by friction stir welding. Journal of Materials Science, 57(31), 15078–15093. https://doi.org/10.1007/s10853-022-07541-w
  • Singh, K., Sehgal, A. K., Singh, G., & Singh, H. (2022). Influence of PWHT on FSW joint of AZ61 Mg alloy. International Conference on Latest Developments in Materials & Manufacturing, 60, 2217–2221. https://doi.org/10.1016/j.matpr.2022.03.117
  • Hunt, J. B., Mazzeo, B. A., Sorensen, C. D., & Hovanski, Y. (2022). A Generalized Method for In-Process Defect Detection in Friction Stir Welding. Journal of Manufacturing and Materials Processing, 6(4), 80. https://doi.org/10.3390/jmmp6040080
  • Elatharasan, G., & V.S., S. kumar. (2013). An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy using RSM. Procedia Engineering, 64. https://doi.org/10.1016/j.proeng.2013.09.202
  • Khalaf, H. I., Al-Sabur, R., Abdullah, M. E., Kubit, A., & Derazkola, H. A. (2022). Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy. Materials, 15(6), 2223. https://doi.org/10.3390/ma15062223
  • Thomas, W. M., Johnson, K. I., & Wiesner, C. S. (2003). Friction Stir Welding – Recent Developments in Tool and Process Technologies. Advanced Engineering Materials, 5(7), 485–490. https://doi.org/10.1002/adem.200300355
  • Ahmadi, H., Arab, N. B. M., Ghasemi, F. A., & Farsani, R. E. (2012). Influence of Pin Profile on Quality of Friction Stir Lap Welds in Carbon Fiber Reinforced Polypropylene Composite. International Journal of Mechanics and Applications, 2(3), 24–28. https://doi.org/10.5923/j.mechanics.20120203.01
  • Verma, S., Gupta, M., & Misra, J. P. (2016). Friction Stir Welding of Aerospace Materials: A State of Art Review. In B. Katalinic (Ed.), DAAAM International Scientific Book (1st ed., Vol. 15, pp. 135–150). DAAAM International Vienna. https://doi.org/10.2507/daaam.scibook.2016.13
  • Gibson, B. T., Lammlein, D. H., Prater, T. J., Longhurst, W. R., Cox, C. D., Ballun, M. C., … Strauss, A. M. (2014). Friction stir welding: Process, automation, and control. Journal of Manufacturing Processes, 16(1), 56–73. https://doi.org/10.1016/j.jmapro.2013.04.002
  • He, X., Gu, F., & Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003
  • Bhardwaj, N., Narayanan, R. G., Dixit, U. S., & Hashmi, M. S. J. (2019). Recent developments in friction stir welding and resulting industrial practices. Advances in Materials and Processing Technologies, 5(3), 461–496. https://doi.org/10.1080/2374068X.2019.1631065
  • Zhao, Y. H., Lin, S. B., Qu, F. X., & Wu, L. (2006). Influence of pin geometry on material flow in friction stir welding process. Materials science and technology, 22(1), 45-50. https://doi.org/10.1179/174328406X78424
  • Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology, 200(1–3), 163–175. https://doi.org/10.1016/j.jmatprotec.2007.09.019
  • Scialpi, A., De Filippis, L. A. C., & Cavaliere, P. (2007). Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Materials and Design, 28(4), 1124–1129. https://doi.org/10.1016/j.matdes.2006.01.031
  • Liu, F. C., & Ma, Z. Y. (2008). Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 39(10), 2378–2388. https://doi.org/10.1007/s11661-008-9586-2
  • Sorensen, C., & Nielsen, B. (2009). Exploring Geometry Effects for Convex Scrolled Shoulder, Step Spiral Probe FSW Tools. In The Materials Society Annual Meeting (pp. 85–92).
  • Longhurst, W. R. (2009). Force Control of Friction Stir Welding, 229.
  • Muthu, M. F. X., & Jayabalan, V. (2016). Effect of pin profile and process parameters on microstructure and mechanical properties of friction stir welded Al–Cu joints. Transactions of Nonferrous Metals Society of China, 26(4), 984-993. https://doi.org/10.1016/S1003-6326(16)64195-X
  • Hassanifard, S., Ghiasvand, A., Hashemi, S. M., & Varvani-Farahani, A. (2022). The effect of the friction stir welding tool shape on tensile properties of welded Al 6061-T6 joints. Materials Today Communications, 31, 103457. https://doi.org/10.1016/j.mtcomm.2022.103457
  • Azimzadegan, T., & Serajzadeh, S. (2010). An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds. Journal of Materials Engineering and Performance, 19(9), 1256–1263. https://doi.org/10.1007/s11665-010-9625-1
  • Dinaharan, I., & Murugan, N. (2012). Optimization of friction stir welding process to maximize tensile strength of AA6061/ZrB 2 in-situ composite butt joints. Metals and Materials International, 18(1), 135–142. https://doi.org/10.1007/s12540-012-0016-z
  • Heidarzadeh, A., Khodaverdizadeh, H., Mahmoudi, A., & Nazari, E. (2012). Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Materials and Design, 37, 166–173. https://doi.org/10.1016/j.matdes.2011.12.022
  • Suresha, C. N., Rajaprakash, B. M., & Upadhya, S. (2011). A Study of the Effect of Tool Pin Profiles on Tensile Strength of Welded Joints Produced Using Friction Stir Welding Process. Materials and Manufacturing Processes, 26(9), 1111–1116. https://doi.org/10.1080/10426914.2010.532527
  • Guo, J., Gougeon, P., & Chen, X. G. (2012). Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B4C MMC and AA6063 alloy. Materials Science and Engineering: A, 553, 149-156. https://doi.org/10.1016/j.msea.2012.06.004
  • Mendes, N., Neto, P., Simão, M. A., Loureiro, A., & Pires, J. N. (2016). A novel friction stir welding robotic platform: welding polymeric materials. The International Journal of Advanced Manufacturing Technology, 85(1), 37–46. https://doi.org/10.1007/s00170-014-6024-z
  • Shah, S., & Tosunoglu, S. (2012). Friction Stir Welding: Current State of the Art and Future Prospects, 7.
  • Goloborodko, A., Ito, T., Yun, X., Motohashi, Y., & Itoh, G. (2004). Friction Stir Welding of a Commercial 7075-T6 Aluminum Alloy: Grain Refinement, Thermal Stability and Tensile Properties. Materials Transactions, 45, 2503–2508. https://doi.org/10.2320/matertrans.45.2503
  • Murr, L. E. (2010). A Review of FSW Research on Dissimilar Metal and Alloy Systems. Journal of Materials Engineering and Performance, 19(8), 1071–1089. https://doi.org/10.1007/s11665-010-9598-0
  • Albannai, A. I. (2020). Review the common defects in friction stir welding. Internatıonal Journal of Scıentific & Technology Research, 9(11), 318-329.
  • Mahoney, M. W., Rhodes, C. G., Flintoff, J. G., Bingel, W. H., & Spurling, R. A. (1998). Properties of friction-stir-welded 7075 T651 aluminum. Metallurgical and Materials Transactions A, 29(7), 1955–1964. https://doi.org/10.1007/s11661-998-0021-5
  • Swarnkar, A., Kumar, R., Suri, A., & Saha, A. (2016, December). A review on Friction Stir Welding: An environment friendly welding technique. In 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 1-4). IEEE. https://doi.org/10.1109/R10-HTC.2016.7906807
  • Liu, H. J., Zhou, L., Huang, Y. X., & Liu, Q. W. (2010). Study of the key issues of friction stir welding of titanium alloy. In Materials Science Forum (Vol. 638, pp. 1185-1190). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.638-642.1185
  • Singh, K., Singh, G., & Singh, H. (2018). Review on friction stir welding of magnesium alloys. Journal of Magnesium and Alloys, 6(4), 399–416. https://doi.org/10.1016/j.jma.2018.06.001
  • Kumar, N., Das, A., & Prasad, S. B. (2020). An analysis of friction stir welding (FSW) of metal matrix composites (MMCs). Materials Today: Proceedings, 26, 2650–2656. https://doi.org/10.1016/j.matpr.2020.02.558
  • Dos Santos, J. F., Staron, P., Fischer, T., Robson, J. D., Kostka, A., Colegrove, P., ... & Schreyer, A. (2018). Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation. Acta Materialia, 148, 163-172. https://doi.org/10.1016/j.actamat.2018.01.020
  • Strand, S. (2003, September). Joining plastics-can friction stir welding compete?. In Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No. 03CH37480) (pp. 321-326). IEEE.https://doi.org/10.1109/EICEMC.2003.1247904
  • Doos, Q. M., & Wahab, B. A. (2012). Experimental study of friction stir welding of 6061-T6 aluminum pipe. International Journal of Mechanical Engineering and Robotics Research, 1(3), 143-156.
  • Campanelli, S., Casalino, G., Casavola, C., & Moramarco, V. (2013). Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy. Materials, 6(12), 5923–5941. https://doi.org/10.3390/ma6125923
  • Taban, E., & Kaluç, E. (2007). Comparison between microstructure characteristics and joint performance of 5086-H32 aluminium alloy welded by MIG, TIG and friction stir welding processes. Kovove Materialy, 45, 241–248.
  • Lin, J. W., Chang, H. C., & Wu, M. H. (2014). Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding. Journal of Manufacturing Processes, 16(2), 296-304. https://doi.org/10.1016/j.jmapro.2013.09.006
  • Ikumapayi, O. M., & Akinlabi, E. T. (2019). Efficacy of α-β grade titanium alloy powder (Ti–6Al–2Sn–2Zr–2Mo–2Cr–0.25Si) in surface modification and corrosion mitigation in 3.5% NaCl on friction stir processed armour grade 7075-T651 aluminum alloys—insight in defence applications. Materials Research Express, 6(7), 076546. https://doi.org/10.1088/2053-1591/ab1566
  • Wells, M., Roopchand, B., Montgomery, J., & Gooch, W. (1998). Titanium Applications and R&D for Army Ground Systems TMS Non-Aerospace Applications of Titanium.
  • Burguess, V., & Rickert, R. (2019). Investigation in Friction Stir Welded Aluminum Alloy 2139-T8 for Hull Structure Applications, 27.
  • Ding, J., Carter, B., Lawless, K., Nunes, A., Russell, C., Suites, M., & Schneider, J. (2006). A Decade of Friction Stir Welding R and D at NASA’s Marshall Space Flight Center and a Glance into the Future. NTRS - NASA Technical Reports Server, (20080009619).
  • Sergeeva, E. V. (2013). Friction stir welding in aerospace industry. The Paton Welding Journal, 5, 56–60.
  • Srubar, M. (2021). Application of friction stir welding in aircraft structures.
  • Ding, J., Michael, F., & Sowards, J. W. (2020). To the Moon, Mars, and Beyond: NASA’s Space Launch System. Welding Journal, 60.
  • Leon, J. S., Bharathiraja, G., & Jayakumar, V. (2020). A review on Friction Stir Welding in Aluminium Alloys. IOP Conference Series: Materials Science and Engineering, 954(1), 012007. https://doi.org/10.1088/1757-899x/954/1/012007
  • Singh, P., Biswas, P., & Kore, S. D. (2019). Influence of Traverse Speed in Self-Reacting FSW of AA6061-T6. Journal of Ship Production and Design.
  • Martin, J., & Wei, S. (2015). Friction Stir Welding Technology for Marine Applications (pp. 217–226). https://doi.org/10.1002/9781119093343.ch24
  • Renish, R. R., Pranesh, M. A., & Logesh, K. (2018). Design and analysis of a portable friction stir welding machine. Materials Today: Proceedings, 5(9, Part 3), 19340–19348. https://doi.org/10.1016/j.matpr.2018.06.293
  • Kayode, O., & Akinlabi, E. T. (2019). An overview on joining of aluminium and magnesium alloys using friction stir welding (FSW) for automotive lightweight applications (Vol. 6). IOP Publishing. Retrieved from https://doi.org/10.1088/2053-1591/ab3262
  • Kusuda, Y. (2013). Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass‐production vehicle. Industrial Robot: An International Journal, 40(3), 208–212. https://doi.org/10.1108/01439911311309889
  • Lee, S. C. (2013). Technologies for Robotized Welding of Big Aluminium Structures with Tolerances for High Speed Trains. Journal of the Korean Welding and Joining Society, 31(1), 33–37. https://doi.org/10.5781/KWJS.2013.31.1.33
  • Mononen, J., Sirén, M., & Hänninen, H. (2003). Cost Comparison of FSW and MIG Welded Aluminium Panels. Welding in the World, 47(11–12), 32–35. https://doi.org/10.1007/BF03266406
  • Gite, R. A., Loharkar, P. K., & Shimpi, R. (2019). Friction stir welding parameters and application: A review. Materials Today: Proceedings, 19, 361–365. https://doi.org/10.1016/j.matpr.2019.07.613