Wide bandwidth CMOS four-quadrant mixed mode analogue multiplier using a second generation current conveyor circuit

Wide bandwidth CMOS four-quadrant mixed mode analogue multiplier using a second generation current conveyor circuit

This paper presents a new realization for a CMOS four-quadrant analogue multiplier. The proposed circuitis composed of three second generation current conveyor circuits (CCII), two NMOS transistors operating in the linearregion, and four passive resistances. It can be operated in current mode and voltage mode without changing the circuittopology. The simulations results of the proposed mixed mode multiplier are verified by TSPICE simulator based onthe BSIM3v3 transistor model for TSMC 0.18 µm CMOS process available from MOSIS at 25 ◦ C with ±0.8 V supplyvoltage. Through the use of resistive compensation with different passive resistance values, the voltage mode responsespresent ±0.25 V dynamic range with THD less than 0.114% and wide bandwidth extended from 3.42 GHz to 4.1 GHz.The current mode responses show ±150 µA dynamic range with a maximum THD value about 0.083% and largebandwidth expanded from 2.67 GHz to 3.12 GHz.

___

  • [1] Lui SC, Kramer J, Indiveri G, Delbruck T, Douglas R. Analog VLSI: Circuits and Principles. Cambridge, MA, USA: Massachusetts Institute of Technology Press, 2002.
  • [2] Filanovsky IM, Baltes H. CMOS two-quadrant multiplier using transistor triode regime. IEEE J Solid-St Circ 1992; 27: 831-833.
  • [3] Al-Suhaibani ES, Al-Absi MA. A compact CMOS current-mode analog multi-functions circuit. Analog Integr Circ S 2015; 84: 471-477.
  • [4] Huang Z, Jiang M, Inoue Y. A highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback. IEICE T Electron 2009; 92-C: 806-814.
  • [5] Saxena N, Clark JJ. A four-quadrant CMOS analog multiplier for analog neural network. IEEE J Solid-St Circ 1994; 29: 746-749.
  • [6] Hashiesh MA, Mahmoud SA, Soliman AM. New four-quadrant CMOS current-mode and voltage-mode multipliers. Analog Integr Circ S 2005; 45: 295-307.
  • [7] Shoemaker PA, Haviland GL, Shimabukuro RL, Lagnado I. A simple CMOS analog four-quadrant multiplier. Analog Integr Circ S 1991; 1: 107-117.
  • [8] Dejhan K, Prommee P, Tiamvorratat W, Mitatha S, Chaisayun I. A design of four-quadrant analog multiplier. In: IEEE 2004 Communications and Information Technology; 26–29 October 2004; Sapporo, Japan: IEEE. pp 29-32.
  • [9] Bult K, Wallinga H. A CMOS four-quadrant analog multiplier. IEEE J Solid-St Circ 1986; 21: 430-435.
  • [10] Machowski W, Kuta S, Jasielski J. Four-quadrant analog multiplier based on CMOS inverters. Analog Integr Circ S 2008; 55: 249-259.
  • [11] Keles S, Kuntman HH. Four quadrant FGMOS analog multiplier. Turk J Elec Eng & Comp Sci 2011; 19: 291-301.
  • [12] Hwang YS, Liu WH, Tu SH, Chen JJ. New building block: multiplication-mode current conveyor. IET Circ Device Syst 2009; 3: 41-48.
  • [13] Elwan HO, Soliman AM. CMOS differential current conveyors and applications for analog VLSI. Analog Integr Circ S 1996; 11: 35-45.
  • [14] Abuelma’atti MT, Al-Qahtani MA. A current-mode current-controlled current-conveyor-based analogue multiplier/divider. Int J Electronics 1998; 85: 71-77.
  • [15] Piccirilli MC. A current-conveyor-based multiplier/divider cell. Int J Circ Theor Appl 1996; 24: 233-237.
  • [16] Premont C, Abouchi N, Grisel R, Chante JP. A BiCMOS current conveyor based four-quadrant analog multiplier. Analog Integr Circ S 1999; 19: 159-162.
  • [17] Kumngern M, Junnapiya S. A CMOS four-quadrant current multiplier using electronically tunable CCII. In: IEEE 2013 Advanced Technologies for Communications; 16–18 October 2013; Ho Chi Minh City, Vietnam: IEEE. pp. 366-369.
  • [18] Veeravalli A, Sanchez-Sinencio E, Silva-Martinez J. A CMOS transconductance amplifier architecture with wide tuning range for very low frequency applications. IEEE J Solid-St Circ 2002; 37: 776-781.
  • [19] Igarashi Y, Hyogo A, Sekine K. Design of very low-distortion, four-quadrant analog multiplier-type CMOS-OTA considering variation of mobility according to the gate voltage. Electron Comm Jpn 2 1994; 77: 65-76.
  • [20] Riewruja V, Rerkratn A. Four-quadrant analogue multiplier using operational amplifier. Int J Electron 2011; 98: 459-474.
  • [21] Riewruja V, Rerkratn A. Analog multiplier using operational amplifiers. Indian J Pure Ap Phy 2010; 48: 67-70.
  • [22] Sedra A, Smith K. A second-generation current conveyor and its applications. IEEE T Circuits Syst 1970; 17: 132-134.
  • [23] Gupta M, Singh U, Srivastava R. Bandwidth extension of high compliance current mirror by using compensation methods. Active and passive electronic components 2014: 1-8.
  • [24] Voo T, Toumazou C. High-speed current mirror resistive compensation technique. Electron Lett 1995; 31: 248-250.
  • [25] Sedra A, Smith K. Microelectronic Circuits. 5th edition. Oxford, UK: Oxford University Press, 2004.
  • [26] Hidayat R, Dejhan K, Moungnoul P, Miyanaga Y. OTA-based high frequency CMOS multiplier and squaring circuit. In: IEEE 2008 Intelligent Signal Processing and Communications Systems; 8–11 February 2009; Bangkok, Thailand: IEEE. pp. 1-4.
  • [27] Aleshams M, Shahsavandi A. A low power high frequency CMOS RF four quadrant analog mixer. International Journal of Electrical and Computer Engineering 2011; 5: 1622-1624.
  • [28] Yuce E, Yucel F. A new cascadable CMOS voltage squarer circuit and its application: four-quadrant multiplier. Indian J Eng Mater S 2014; 21: 351-357.
  • [29] Al-Absi MA, As-Sabban IA. A new highly accurate CMOS current-mode four-quadrant multiplier. Arab J Sci Eng 2015; 40: 551-558.
  • [30] Kumngern M, Dejhan K. Versatile dual-mode class-AB four-quadrant analog multiplier. International Journal of Electrical and Communication Engineering 2008; 2: 1733-1740.