Predictive optimization of sliding mode control using recurrent neural paradigm for nonlinear DFIG-WPGS during distorted voltage

Predictive optimization of sliding mode control using recurrent neural paradigm for nonlinear DFIG-WPGS during distorted voltage

Dynamic characteristics of the doubly-fed induction generator (DFIG)-based wind power generation (WPGS) are fully nonlinear. Therefore, issues such as stability and achieving high efficiency, especially under harmonics behavior, are challenges that assess the control strategy reliability to find the perfect dynamic solution. This discussion offers a control strategy for the separated stator-port power using a predictive sliding mode strategy with a resonant function (PSMC-R) based on a deep recurrent neural network (DRNN). DRNN is formed as a low-order Taylor series formula. PSMC-R predicts the perfect switching surface path and regulates the distorted nonlinear DFIG with several dynamic aims. This approach reduces excessive chatter while violating the sliding surface path range of the classical SMC switch-part. Also, PSMC-R handled the fundamental and 5th-/7th-type harmonic wave at the positive synchronous +dqreference level of the machine dynamic quantities without further dissociation computations of the components. Dynamic results of a 1.5 MW DFIG-WPGS are simulated by using Matlab-package and presented good dynamic characteristics, less pulsation ratio of variables, and optimal sliding chatter of PSMC-R during various operating scenarios compared to the other classical regulation approaches.

___

  • [1] REN21. Renewables 2019 global status report. REN21 Secretariat: Paris, France 2019.
  • [2] Hemeyine AV, Abbou A, Bakouri A, Mokhlis M, Moustapha El et al. A robust interval Type-2 fuzzy logic controller for variable speed wind turbines based on a doubly fed induction generator. Inventions 2021; 6 (2): 21. doi: 10.3390/inventions6020021
  • [3] Brando G, Dannier A, Spina I. Performance analysis of a full order sensorless control adaptive observer for doublyfed induction generator in grid connected operation. Energies 2021; 14 (5): 1254. doi: 10.3390/en14051254
  • [4] Liu X, Kong X. Nonlinear model predictive control for DFIG-based wind power generation. IEEE Transactions on Automation Science and Engineering 2014; 11 (4): 1046-1055. doi: 10.1109/TASE.2013.2284066
  • [5] Da Costa JP, Pinheiro H, Degner T, Arnold G. Robust controller for DFIGs of grid-connected wind turbines. IEEE Transactions on Industrial Electronics 2011; 58 (9): 4023-4038. doi: 10.1109/TIE.2010.2098630
  • [6] Goodarzi A, Ranjbar AM, Dehghani M, GhasemiGarpachi M, Ghiasi M. Doubly fed induction generators to enhance inter-area damping based on a Robust controller:H2 /H∞ Control. SN Applied Sciences 2021; 3 (1): 1-14. doi: 10.1007/s42452-021-04150-1
  • [7] Zhang Y, Jiao J, Xu D, Jiang D, Wang Z et al. Model predictive direct power control of doubly fed induction generators under balanced and unbalanced network conditions. IEEE Transactions on Industry Applications 2020; 56 (1): 771-786. doi: 10.1109/TIA.2019.2947396
  • [8] Marques GD, Iacchetti MF. Minimization of torque ripple in the DFIG-DC system via predictive delay compensation. IEEE Transactions on Industrial Electronics 2018; 65 (1): 103-113. doi: 10.1109/TIE.2017.2716860
  • [9] Vayeghan MM, Davari SA. Torque ripple reduction of DFIG by a new and robust predictive torque control method. IET Renewable Power Generation 2017; 11 (11): 1345-1352. doi: 10.1049/iet-rpg.2016.0695
  • [10] Zhang X, Hou B. Double vectors model predictive torque control without weighting factor based on voltage tracking error. IEEE Transactions on Power Electronics 2018; 33 (3): 2368-2380. doi: 10.1109/TPEL.2017.2691776
  • [11] Cheng C, Nian H. Low-complexity model predictive stator current control of DFIG under harmonic grid voltages. IEEE Transactions on Energy Conversion 2017; 32 (3): 1072-1080. doi: 10.1109/TEC.2017.2694849
  • [12] Sun D, Wang X, Nian H, Zhu ZQ. A sliding-mode direct power control strategy for DFIG under both balanced and unbalanced grid conditions using extended active power. IEEE Transactions on Power Electronics 2018; 33 (2): 1313-1322. doi: 10.1109/TPEL.2017.2686980
  • [13] Patnaik RK, Dash PK. Fast adaptive back-stepping terminal sliding mode power control for both the rotor-side as well as grid-side converter of the doubly fed induction generator-based wind farms. IET Renewable Power Generation 2016; 10 (5): 598-610. doi: 10.1049/iet-rpg.2015.0286
  • [14] Martinez MI, Tapia G, Susperregui A, Camblong H. Sliding-mode control for DFIG rotor- and grid-side converters under unbalanced and harmonically distorted grid voltage. IEEE Transactions on Energy Conversion 2012; 27 (2): 328-339. doi: 10.1109/TEC.2011.2181996
  • [15] Eltamaly AM, Al-Saud MS, Abo-Khalil AG. Dynamic control of a DFIG wind power generation system to mitigate unbalanced grid voltage. IEEE Access 2020; 8: 39091-39103. doi: 10.1109/ACCESS.2020.2976195
  • [16] Sun D, Wang X. Sliding-mode DPC using SOGI for DFIG under unbalanced grid condition. Electronics Letters 2017; 53(10): 674-676. doi: 10.1049/el.2017.0963
  • [17] Nian H, Cheng P, Zhu ZQ. Coordinated direct power control of DFIG system without phase-locked loop under unbalanced grid voltage conditions. IEEE Transactions on Power Electronics 2016; 31 (4): 2905-2918. doi: 10.1109/TPEL.2015.2453127
  • [18] Hu J, Nian H, Hu B, He Y, Zhu ZQ. Direct active and reactive power regulation of DFIG using sliding-mode control approach. IEEE Transactions on Energy Conversion 2010; 25 (4): 1028-1039. doi: 10.1109/TEC.2010.2048754
  • [19] Martinez MI, Susperregui A, Tapia G, Xu L. Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renewable Power Generation 2013; 7 (4): 370-379.
  • [20] Xiong L, Li P, Wang J. High-order sliding mode control of DFIG under unbalanced grid voltage conditions. International Journal of Electrical Power & Energy Systems 2020; 117: 105608. doi: 10.1016/j.ijepes.2019.105608
  • [21] Djilali L, Sanchez EN, Belkheiri M. First and high order sliding mode control of a DFIG-based wind turbine. electric power components and systems 2020; 48(1-2): 105-116. doi: 10.1080/15325008.2020.1758836
  • [22] Chen SZ, Cheung NC, Chung Wong K, Wu J. Integral sliding-mode direct torque control of doubly-fed induction generators under unbalanced grid voltage. IEEE Transactions on Energy Conversion 2009; 25 (2): 356-368. doi: 10.1109/TEC.2009.2036249
  • [23] Shang L, Hu J. Sliding-mode-based direct power control of grid-connected wind-turbine-driven DFIG under unbalanced grid voltage conditions. IEEE Transactions on Energy Conversion 2012; 27 (2): 362-373. doi: 10.1109/TEC.2011.2180389
  • [24] Hao X, Yang X, Liu T, Huang L, Chen W. A sliding-mode controller with multi-resonant sliding surface for singlephase grid-connected VSI with an LCL filter. IEEE Transactions on Power Electronics 2013; 28 (5): 2259-2268. doi: 10.1109/TPEL.2012.2218133
  • [25] Quan Y, Hang L, He Y, Zhang Y. Multi-Resonant-based sliding mode control of DFIG-based wind system under unbalanced and harmonic network conditions. Applied Sciences 2019; 9 (6): 1124. doi: 10.3390/app9061124
  • [26] Hu J, Nian H, Xu H, He Y. Dynamic modeling and improved control of DFIG under distorted grid voltage conditions. IEEE Transactions on Energy Conversion 2011; 26 (1): 163-175. doi: 10.1109/TEC.2010.2071875
  • [27] Shi K, Yin X, Jiang L, Liu Y, Hu Y et al. Perturbation estimation based nonlinear adaptive power decoupling control for DFIG wind turbine. IEEE Transactions on Power Electronics 2020; 35 (1): 319-333.
  • [28] Mohammed OME, Xu W, Liu Y, Blaabjerg F. An improved control method for standalone brushless doubly fed induction generator under unbalanced and nonlinear loads using dual-resonant controller. IEEE Transactions on Industrial Electronics 2021; 68 (7): 5594-5605. doi: 10.1109/TIE.2020.2994891
  • [29] Wu C, Zhou D, Blaabjerg F. Direct power magnitude control of DFIG-DC system without orientation control. IEEE Transactions on Industrial Electronics 2021; 68 (2): 1365-1373. doi: 10.1109/TIE.2020.2970666
  • [30] Kuzenkov O, Kuzenkova G. Identification of the fitness function using neural networks. Procedia Computer Science 2020; 169: 692-697. doi: 10.1016/j.procs.2020.02.179
  • [31] Yan Z, Wang J. Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Transactions on Industrial Informatics 2012; 8 (4): 746-756.
  • [32] Du H, Yu X, Chen M, Li S. Chattering-free discrete-time sliding mode control. Automatica, 2016; 68(c): 87-91. doi: 10.1016/j.automatica.2016.01.047
  • [33] Su X, Liu X, Shi P, Yang R. Sliding mode control of discrete-time switched systems with repeated scalar nonlinearities. IEEE Transactions on Automatic Control 2017; 62(9): 4604-4610. doi: 10.1109/TAC.2016.2626398
  • [34] Yu S, Long X. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica 2015; 54: 158-165. doi: 10.1016/j.automatica.2015.02.001
  • [35] Xu Q, Li Y. Model predictive discrete-time sliding mode control of a nano-positioning piezo-stage without modeling hysteresis. IEEE Transactions on Control Systems Technology 2012; 20 (4): 983-994. doi: 10.1109/TCST.2011.2157345
  • [36] Bartoszewicz A. Discrete-time quasi-sliding-mode control strategies. IEEE Transactions on Industrial Electronics 1998; 45 (4): 633-637. doi: 10.1109/41.704892
  • [37] Terriche Y, Golestan S, Guerrero JM, Vasquez JC. Multiple-complex coefficient-filter-based PLL for improving the performance of shunt active power filter under adverse grid conditions. IEEE Power & Energy Society General Meeting 2018; 1-5. doi: 10.1109/PESGM.2018.8586172
  • [38] Hu JB, Zhang W, Wang HS, He Y, Xu L. Proportional integral plus multi-frequency resonant current controller for grid-connected voltage source converter under imbalanced and distorted supply voltage conditions. Zhejiang University-SCIENCE A 2009; 10 (10): 1532-1540. doi: 10.1631/jzus.A0820440
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Visual Interpretability of Capsule Network for Medical Image analysis

Patrick Kwabena MENSAH, Faiza Umar BAWAH, Mighty Abra AYIDZOE, Yongbin YU, Jingye CAI

Microwave hyperthermia application with bioimplant single slot coaxial antenna design for mouse breast cancer treatment

Ahmet Rifat GÖRGÜN, Cem BAYTORE, Adnan KAYA, M. Ibrahim TUGLU, Selcuk COMLEKCI

Smart charging of electric vehicles to minimize the cost of charging and the rate of transformer aging in a residential distribution network

Arjun VISAKH, Manickavasagam Parvathy SELVAN

A new classification method using soft decision-making based on an aggregation operator of fuzzy parameterized fuzzy soft matrices

Uğur ERKAN, Samet MEMİŞ, Serdar ENGİNOĞLU

Analyzing probabilistic optimal power flow problem by cubature rules

Qing Xiao

Improving utilization rate of semi-parallel successive cancellation architecture for polar codes using 2-bit decoding

Dinesh Kumar DEVADOSS, Shantha Selvakumari RAMAPACKIAM

Critical speed calculation of a refurbishment of 11MW hydro power plant unit

Ahmet Selim PEHLİVAN, Dario KRALJEVIC, Ivan TRIPLAT, Beste BAHÇECİ

45-nm CdS QDs photoluminescent filter for photovoltaic conversion efficiency recovery

Victor Manuel JUAREZ LUNA, Carlos VILLA ANGULO, Daniel SAUCEDA CARVAJAL, Ivett ZAVALA GUILLEN, Enrique RODARTE GUAJARDO, Francisco Javier CARRANZA CHAVEZ

Biometric identification using panoramic dental radiographic images with few-shot learning

Musa ATAŞ, Esma ÖZEROĞLU, Cüneyt ÖZDEMİR, Burak AK, İsa ATAŞ

The analysis and optimization of CNN Hyperparameters with fuzzy tree model for image classification

Kübra UYAR, Şakir TAŞDEMİR, İlker Ali ÖZKAN