45-nm CdS QDs photoluminescent filter for photovoltaic conversion efficiency recovery

45-nm CdS QDs photoluminescent filter for photovoltaic conversion efficiency recovery

Different energy loss mechanisms have restricted the breakthroughs in concentrated photovoltaic/thermal (CPVT) hybrid solar systems that use photoluminescent filters. Reflected and transmitted light, emission spectrum, nonideal absorption, Stokes shift (proportional to $f_1f_2 )$, overlapping absorption, and scattering of light are mechanisms in photoluminescent filters that restrict optical efficiency to below theoretical limits. In addition, increases in temperature by light concentration affect the operation of photovoltaic cells and photoluminescent filters because of an increase in molecular motion and collisions that consequently lead to energy loss. Meanwhile, nanocrystals or quantum dots (QDs) from groups IIffVI hold electrical, optical, chemical, and physical properties that can be used to mitigate the aforementioned limitations. In this study, cadmium sulfide QDs with a diameter of 45 nm and absorption and photoluminescent spectra centered at 480 and 600 nm, respectively, were deposited in a soda-lima glass to obtain a 200-nm-thick film photoluminescent filter. The photoluminescent filter was matched to a silicon solar cell and used as an electrical power efficiency recovery filter in a hybrid CPVT solar system. A recovery of electrical power conversion efficiency higher than 3.1% at temperatures greater than 100 ◦ C was theoretically predicted and practically confirmed. A predicted trend of increases in recovered electrical power parameters as temperature increases was also verified.

___

  • [1] Sharaf OZ, Orhan MF. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – fundamentals, design considerations and current technologies. Renewable and Sustainable Energy Reviews 2015; 50: 1500–1565. doi:10.10M. K.16/j.rser.2015.05.036
  • [2] Cappelletti A, Catelani M, Ciani L, Kazimierczuk, Reatti A. Practical Issues and Characterization of a Photovoltaic/ Thermal Linear Focus 20× Solar Concentrator. IEEE Transactions on Instrument and Measurement 2016; 65 (11): 2464-2475. doi: 10.1109/TIM.2016.2588638
  • [3] Kuo MT, Lo WY. A combination of concentrator photovoltaics and water cooling system to improve solar energy utilization. IEEE Transactions on Industry Applications 2014; 50 (4): 2818–2827. doi: 10.1109/IAS.2013.6682486
  • [4] Chow TT. A review on photovoltaic/thermal hybrid solar technology. Applied Energy 2010; 87 (2): 365–79. doi:10.1016/j.apenergy.2009.06.037
  • [5] Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews 2012; 16: 1383–98. doi:10.1016/j.rser.2011.12.013
  • [6] Chemisana D. Building integrated concentrating photovoltaics: a review. Renewable Sustainable Energy Reviews 2011; 15: 603–611. doi:10.1016/j.rser.2010.07.017
  • [7] Singh P, Ravindar NM. Temperature dependent of solar cell performance-and analysis. Solar Energy Materials & Solar Cells 2012; 101: 36-45. doi:10.1016/j.solmat.2012.02.019
  • [8] Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlation. Solar Energy 2009; 83: 614-624. doi:10.1016/j.solener.2008.10.008
  • [9] Berthod C, Kristensen ST, Strandberg R, Odden JO, Nie S et al. Temperature sensitivity of multicrystalline silicon solar cells. IEEE Journal of Photovoltaic 2019; 9 (4): 957–964. doi: 10.1109/JPHOTOV.2019.2911871
  • [10] Ingersoll JG. Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays. Journal Solar Energy Engineering 1986; 108: 95–101. doi:10.1115/1.3268087
  • [11] Eberle R, Haag ST, Geisemeyer I, Padilla M, Schubert MC. Temperature Coefficient Imaging for Silicon Solar Cells. IEEE Journal of Photovoltaics 2018; 8 (4): 930-936. doi: 10.1109/JPHOTOV.2018.2828839.
  • [12] Xing J, Chao X, Zhirong L, Xiaoze D, Gaosheng W et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar system with waste heat recovery (WHR). Science Bulletin 2017; 62 (20): 1388-1426. doi:10.1016/j.scib.2017.10.002
  • [13] Mojiri A, Taylor R, Thomsen E, Rosengarten G. Spectral beam splitting for efficient conversion of solar energy—a review. Renewable and Sustainable Energy Reviews 2013; 28: 654–63. doi:10.1016/j.rser.2013.08.026
  • [14] Imenes AG, Mills DR. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Materials and Solar Cells 2004; 84: 19–69. doi:10.1016/j.solmat.2004.01.038
  • [15] Gotzberger A, Greubel W. Apparatus for convert light energy into elect energy, US Patent 4,110,123, 1978.
  • [16] Zhang L, Jing D, Zhao L, Wei J, Guo L. Concentrating PV/T hybrid system for simultaneous electricity and usable heat generation: a review. International Journal of Photoenergy 2012; Special Issue ID 869753. doi:10.1155/2012/869753
  • [17] Prasad PN. Introduction to Nanomedicine and Nanobioengineering. Hoboken, NJ, USA: John Wiley & Sons Press, 2012.
  • [18] Prasad PN. In: Introduction to Biophotonics: Nanotechnology for Biophotonics: Bionanophotonics. 1st ed. Hoboken, NJ, USA: John Wiley & Sons, 2004, pp 520–544. doi:10.1002/0471465380.ch15
  • [19] Ntziachristos V, Bremer C, Weissleder R. Fluoresence imaging with near-infrared light new technology advances that enable in vivo molecular imaging. European Radiology 2003;13 : 195–208. doi:10.1007/s00330-002-1524-x
  • [20] Sharma P, Brown S, Walter G, Swadeshmukul S, Moudgil B. Nanoparticles for bioimaging, Advances in Colloid Interface Science 2006; 123: 471–485. doi:10.1016/j.cis.2006.05.026
  • [21] Villa-Angulo C, Guayante-Santacruz FJ, Villa-Angulo R, Hernandez-Fuentes IO, Morales-Carbajal R et al. Correlation of theory with experimental photon absorption and photon emission of quasitype II CdS/ZnS QDs. Journal Nanophotonics 2018; 12 (4): ID 046010. doi: 10.1117/1.JNP.12.046010
  • [22] Chen EY, Li Z, Milleville CC, Lennon KR, Zide JMO et al. CdSe(Te)/CdS/CdSe Rods Versus CdTe/CdS/CdSe Spheres: Morphology-Dependent Carrier Dynamics for Photon Upconversion. IEEE Journal of Photovoltaics 2018; 8 (3): 746-751. doi:10.1109/JPHOTOV.2018.2815710
  • [23] Smyntyna V, Semenenko B, Skobeeva V, Malushin N.Photoactivation of Luminescence in CdS Nanocrystal. Nanotechnology Journal 2014; 5: 355–359. doi:10.3762/bjnano.5.40
  • [24] Li XH, Li JX, Li GD, Liu DP, Chen JS. Controlled Synthesis, Growth Mechanism, and Properties of Monodisperse CdS Colloidal Spheres. Chemistry - A European Journal 2007; 13 (31): 8754–8761. doi:10.1002/chem.200700754
  • [25] Sze SM, Ng KK. In: Physics of Semiconductor Devices: Sensors. 3rd ed. NY, USA: John Wiley & Sons, 1981, pp 743-772.
  • [26] Carullo A, Vallan A. Outdoor experimental laboratory for long-term estimation of photovoltaic-plant performance, IEEE Transactions on Instrument and Measurement 2012; 61 (5): 1307–1314. doi:10.1109/TIM.2011.2180972
  • [27] Landis G, Rafaelle R, Merritt D. High temperature solar cell development. In: 19th European Photovoltaic Science and Engineering Conference; Paris, France; 2004. pp. 7–11.
  • [28] Ando B, Baglio S, Pistorio A, Tina GM, Ventura C. Sentinella: Smart monitoring of photovoltaic systems at panel level, IEEE Transactions on Instrumentation and Measurement 2015; 64 (8): 2188–2199. doi:10.1109/TIM.2014.2386931
  • [29] Hart GW, Raghuraman P. Simulation of thermal aspects of residential photovoltaic Systems. NASA STI/Recon Technical Report N, MIT, 1982.
  • [30] Grag HP, Agarwal RK. Some aspect of a PV/T collector/forced circulation flat plate solar water heated with solar cells. Energy Conversion and Management 1995; 36: 87-99. doi:10.1016/0196-8904(94)00046-3
  • [31] Evans DL, Florschuetz LW. Terrestrial concentrating photovoltaic power system studies. Solar Energy 1978; 20: 37-43. doi:10.1016/0038-092X(78)90139-1
  • [32] Zondga HA, Flat-plate PV-thermal collectors and system – a review, Renewable and Sustainable Energy Reviews 2008; 12 (4): 891-959. doi:10.1016/j.rser.2005.12.012
  • [33] Notton G, Cristofari C, Mattei M, Poggi P. Modeling of doble-glass photovoltaic module using finite differences, Applied thermal Energy 2005; 25: 2854-2877. doi:10.1016/j.applthermaleng.2005.02.008
  • [34] Evans DL. Simplified method for predicting photovoltaic array output. Solar Energy 1981; 27:555-560. doi:10.1016/0038-092X(81)90051-7
  • [35] Evans DL, Florschuetz LW. Cost study on terrestrial photovoltaic power systems with sunlight concentration. Solar Energy 1977; 19: 255-262. doi:10.1016/0038-092X(77)90068-8
  • [36] Bhattacharya R, Pal B, Bansal B. On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation. Applied Physics Letters 2012; 100: ID 222103. doi:10.1063/1.4721495
  • [37] Jijun Q, Zhengguo J, Weibing W, Xiaoxin L, Zhijie C. Effect of annealing on structural, optical and electrical properties of CdS thin films grown by ILGAR. Journal of Wuhan University of Technology-Mater 2006; 21(1): 88–91. doi:10.1007/bf02861479
  • [38] Sekhar H, Rao DN. Stokes and Anti-Stokes Luminescence in Heat-Treated CdS Nanopowders. The Journal of Physical Chemistry C 2013; 117 (5): 2300–2307. doi:10.1021/jp3074943
  • [39] Tenne R, Nabutovsky VM, Lifshitz E, Francis AF. Unusual photoluminescence of porous CdS (CdSe) crystals. Solid State Communications 1992; 82 (9): 651–654. doi: 10.1016/0038-1098(92)90055-E
  • [40] Ramizy A, Aziz WJ, Hassan Z, Omar K, Ibrahim K. Improved performance of solar cell based on porous silicon surfaces. Optik - International Journal for Light and Electron Optics 2011; 122(23): 2075-2077. doi: 10.1016/j.ijleo.2010.11.026
  • [41] Chaplik AV, Entin MV. Charged Impurities in Very Thin Layers. Soviet Journal of Experimental and Theoretical Physics 1972; 34 (6): 1335-1339.
  • [42] Keldysh LV. Coulomb interaction in thin semiconductor and semimetal films. Journal of Experimental and Theoretical Physics Letters 1979; 26 (11): 716–719.
  • [43] Permogorov S, Reznitskii A, Verbin S, Müller GO, Flögel P, Nikiforova M. Localized Excitons in CdS 1−x Sex Solid Solutions, Phys. Stat. Sol B 1982; 113 (2):589-600 . doi:10.1002/pssb.2221130223
  • [44] Cohen E, Sturge MD. Fluorescence line narrowing, localized exciton states, and spectral diffusion in the mixed semiconductor $CdS_x Se _{1−x|$ . Physical Review B 1982; 25: 3828 (1982). doi:10.1103/PhysRevB.25.3828
  • [45] Tenne R, Nabutovsky VM, Lifshitz E, Francis AF. Unusual Photoluminescence of Porous of CdS(CdSe)crystals. Solid State Communications 1992; 82 (9): 651-654.
  • [46] Pacebutas V, Grigoras K, Krotkus A, Gostauto A. Porous Silicon Applications in Solar Cell Technology. Physica Scripta 1997; 69: 255-258.
  • [47] Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 1976; 34 (1): 149–154. doi: 10.1016/0031-3914(67)90062-6
  • [48] Wysocki JJ, Rappaport P. Effect of temperature on photovoltaic solar energy conversion. Journal of Applied Physics 1960; 31: 571-578. doi:10.1061/1.1735630
  • [49] Fan JCC. Theoretical temperature dependence of solar cell parameters. Solar Cells Journal 1986; 17 (2-3): 309-315. doi: 10.1016/0379-6787(86)90020-7
  • [50] Singh P, Singh SN, Lal M, Husain M. Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells Journal 2008;92 (12): 1611-1616. doi:10.1016/j.solmat.2008.07.010
  • [51] Jeng MJ, Lee YL, Chang LB. Temperature dependences of lnxGa1-xN multiple quantum well solar cells. Journal of Physics D: Applied Physics 2009; 42 (10): ID 105101.
  • [52] Green MA. Solar Cells. Englewood Cliffs, NJ, USA: Prentice-Hall, 1982.
  • [53] Singh P. Ravindra NM. Temperature dependences of solar cell performance-an analysis. Solar Energy Materials & Solar Cells 2012; 101: 36-45. doi:10.1016/j.solmat.2o12.02.019
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Long-term traffic flow estimation: a hybrid approach using location-based traffic characteristic

H. İrem TÜRKMEN, Tuğberk AYAR, M. Amaç GÜVENSAN, Ferhat ATLİNAR

45-nm CdS QDs photoluminescent filter for photovoltaic conversion efficiency recovery

Victor Manuel JUAREZ LUNA, Carlos VILLA ANGULO, Daniel SAUCEDA CARVAJAL, Ivett ZAVALA GUILLEN, Enrique RODARTE GUAJARDO, Francisco Javier CARRANZA CHAVEZ

Design and manufacture of electromagnetic absorber composed of boric acid-incorporated wastepaper composites

Osman ÇEREZCİ, Filiz KIRDIOĞULLARI, Mesud KAHRİMAN, Ahmet ÇİFCİ, Ali İhsan KAYA

Adaptive output tracking of distributed parameter systems

Mustafa Doğan, Janset Daşdemir, Berk Altıner

Developing a fake news identification model with advanced deep language transformers for Turkish COVID-19 misinformation data

Mehmet BOZUYLA, Akın ÖZÇİFT

TARA: temperature aware online dynamic resource allocation scheme for energy optimization in cloud data centres

Sridhar SRIDEVI, Vaidyanathan RHYMEND UTHARIARAJ, Narayanamoorthi THILAGAVATHI, Arockiasamy JOHN PRAKASH

Performance analysis and feature selection for network-based intrusion detection with deep learning

Nesli ERDOĞMUŞ, Serhat CANER, Y. Murat ERTEN

Cryptographically strong random number generation using integrated CMOS photodiodes for low-cost microcontroller based applications

Baykal Sarıoğlu

Determining allowable parametric uncertainty in an uncommon quadrotor model for closed loop stability

Mehmet BASKIN, Kemal LEBLEBİCİOĞLU

The analysis and optimization of CNN Hyperparameters with fuzzy tree model for image classification

Kübra UYAR, Şakir TAŞDEMİR, İlker Ali ÖZKAN