Photonic integrated circuit-assisted optical time-domain reflectometer system

Photonic integrated circuit-assisted optical time-domain reflectometer system

Optical time-domain reflectometers (OTDR) are photonic systems that consist of an interrogator, a receiver and a fiber optical cable and have applications in telecommunications, security, environmental monitoring, distributed temperature and strain sensing. Since OTDR systems are bulk optical setups that consume multiple Watts of power, have large mass and volume footprint and are vulnerable to thermal drift, deployment of OTDR systems in the field is expensive, complicated and may not necessarily yield accurate sensing results. Thus, a compact, low-power, inexpensive and thermal drift-free OTDR system needs to be developed for improving the accuracy and the viability of OTDR in the field. In this study, I present the design and modeling of a photonic integrated OTDR system design based on IMEC’s iSiPP50G silicon integrated photonic process design kit. The photonic integrated circuit includes a photonic modulator and a photodetector. Photonic power link budgets and the corresponding electronic signal-to-noise ratios are analyzed for 5–110 km fiber optical OTDR systems and power-efficient OTDR system designs are presented for inexpensive multiproject wafer fabrication.

___

  • [1] Bai Q, Wang Q, Wang D, Wang Y, Gao Y et al. Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors 2019; 19: 1862. doi:10.3390/s19081862
  • [2] Rogers AJ. Polarization-optical time domain reflectometry: a technique for the measurement of field distributions. Applied Optics 1981; 20: 1060-1074. doi:10.1364/AO.20.001060
  • [3] Aoyama K, Nakagawa K, Itoh T. Optical time domain reflectometry in a single-mode fiber. IEEE Journal of Quantum Electronics 1981; 17: 862-868. doi:10.1109/jqe.1981.1071237
  • [4] Husdi IR, Nakamura K, Ueha S. Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry. Measurement Science and Technology 2004; 15: 1553-1559. doi:10.1088/0957-0233/15/8/022
  • [5] Ross JN. Birefringence measurement in optical fibers by polarization-optical time-domain reflectometry. Applied Optics 1982; 21: 3489-3495. doi:10.1364/AO.21.003489
  • [6] Rogers AJ. Polarization-Optical Time Domain Reflectometry. Proceedings of SPIE 1981; 0236: 358- 364.doi:10.1117/12.959037
  • [7] Mikhailov S, Zhang L, Geernaert T, Berghmans F, Thévenaz L. Distributed Hydrostatic Pressure Measurement Using Phase-OTDR in a Highly Birefringent Photonic Crystal Fiber. Journal of Lightwave Technology 2019; 37: 4496-4500.
  • [8] Bolognini G, Park J, Soto MA, Park N, Di Pasquale F. Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Measurement Science and Technology 2007; 18: 3211-3218. doi:10.1088/0957-0233/18/10/s24
  • [9] Wang Z, Zhang B, Xiong J, Fu Y, Lin S et al. Distributed Acoustic Sensing Based on Pulse-Coding Phase-Sensitive OTDR. IEEE Internet of Things Journal 2019; 6: 6117-6124. doi:10.1109/jiot.2018.2869474
  • [10] Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y. Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology 1995; 13: 1296-1302. doi:10.1109/50.400684
  • [11] Park J, Bolognini G, Lee D, Kim P, Cho P et al. Raman-based distributed temperature sensor with simplex coding and link optimization. IEEE Photonics Technology Letters 2006; 18: 1879-1881, doi:10.1109/lpt.2006.881239
  • [12] Bashan G, Diamandi HH, London Y, Preter E, Zadok A. Optomechanical time-domain reflectometry. Nature Communications 2018; 9: 2991. doi:10.1038/s41467-018-05404-0
  • [13] Lu Y, Zhu T, Chen L, Bao X. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR. Journal of Lightwave Technology 2010; 28: 3243-3249.
  • [14] Von Der Weid JP, Passy R, Mussi G, Gisin N. On the characterization of optical fiber network components with optical frequency domain reflectometry. Journal of Lightwave Technology 1997; 15: 1131-1141. doi:10.1109/50.59695
  • [15] Wang Z, Zhang L, Wang S, Xue N, Peng F et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Optics Express 2016; 24: 853-858. doi:10.1364/OE.24.000853
  • [16] Murray MJ, Redding B. Quantitative amplitude-measuring Φ-OTDR with pϵ/ √ Hz sensitivity using a multifrequency pulse train. Optics Letters 2020; 45: 5226-5229. doi:10.1364/OL.400159
  • [17] Fernández-Ruiz MR, Costa L, Martins HF. Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR Technology. Sensors 2019; 19: 4368. doi:10.3390/s19204368
  • [18] Soriano-Amat M, Martins HF, Durán V, Costa L, Martin-Lopez S et al. Time-expanded phase-sensitive optical time-domain reflectometry. Light: Science & Applications 2021; 10: 51. doi:10.1038/s41377-021-00490-0
  • [19] Muanenda Y, Oton C, Faralli S, Di Pasquale F. High performance distributed acoustic sensor using cyclic pulse coding in a direct detection coherent-OTDR. Proceedings of SPIE 2015; 9655: 965547. doi:10.1117/12.2203103
  • [20] Liu H, Pang F, Lv L, Mei X, Song Y et al. True Phase Measurement of Distributed Vibration Sensors Based on Heterodyne φ-OTDR. IEEE Photonics Journal 2018; 10: 1-9. doi:10.1109/jphot.2018.2791101
  • [21] He H, Shao L, Luo B, Li Z, Zou X et al. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Optics Express 2016; 24: 4842-4855. doi:10.1364/OE.24.004842
  • [22] Wang Z, Lou S, Liang S, Sheng X. Multi-Class Disturbance Events Recognition Based on EMD and XGBoost in ϕ-OTDR. IEEE Access 2020; 8: 63551-63558. doi:10.1109/access.2020.2984022
  • [23] Shi Y, Wang Y, Wang L, Zhao L, Fan Z. Multi-event classification for Φ-OTDR distributed optical fiber sensing system using deep learning and support vector machine. Optik 2020; 221: 165373. doi:10.1016/j.ijleo.2020.165373
  • [24] Tejedor J, Macias-Guarasa J, Martins HF, Pastor-Graells J, Corredera P et al. Machine Learning Methods for Pipeline Surveillance Systems Based on Distributed Acoustic Sensing: A Review. Applied Sciences 2017; 7: 841. doi:10.3390/app7080841
  • [25] Selim R. (2021, May 2019). Advanced Photonics Packaging and System Integration Services within EUROPRACTICE. 1.5. Retrieved from https://europractice-ic.com/wpcontent/uploads/2019/05/Tyndall_Photonics_Packaging_within_EuroPractice_V1.5.pdf
  • [26] Wang Y, Flueckiger J, Lin C, Chrostowski L. Universal grating coupler design. Proceedings of SPIE 2013; 8915: 284-290. doi:10.1117/12.2042185
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A novel instrumentation amplifier with high tunable gain and CMRR for biomedical applications

Riyaz AHMAD, Dharmendar BOOLCHANDANI, Amit Mahesh JOSHI

A bi-level charging management approach for electric truck charging station considering power losses

Mehmet Tan TURAN, Yavuz ATEŞ, Tayfur GÖKÇEK, Ahmet Yiğit ARABUL

Improving utilization rate of semi-parallel successive cancellation architecture for polar codes using 2-bit decoding

Dinesh Kumar DEVADOSS, Shantha Selvakumari RAMAPACKIAM

Long-term traffic flow estimation: a hybrid approach using location-based traffic characteristic

H. İrem TÜRKMEN, Tuğberk AYAR, M. Amaç GÜVENSAN, Ferhat ATLİNAR

Developing a fake news identification model with advanced deep language transformers for Turkish COVID-19 misinformation data

Mehmet BOZUYLA, Akın ÖZÇİFT

TARA: temperature aware online dynamic resource allocation scheme for energy optimization in cloud data centres

Sridhar SRIDEVI, Vaidyanathan RHYMEND UTHARIARAJ, Narayanamoorthi THILAGAVATHI, Arockiasamy JOHN PRAKASH

The analysis and optimization of CNN Hyperparameters with fuzzy tree model for image classification

Kübra UYAR, Şakir TAŞDEMİR, İlker Ali ÖZKAN

On an electrostatic micropump with a rigorous mathematical model

Fatih DIKMEN, Ibrahim EFE, Yury TUCHKIN

Modeling and evaluation of SOC-based coordinated EV charging for power management in a distribution system

Ramazan BAYINDIR, Murat AKIL, Emrah DOKUR

Biometric identification using panoramic dental radiographic images with few-shot learning

Musa ATAŞ, Esma ÖZEROĞLU, Cüneyt ÖZDEMİR, Burak AK, İsa ATAŞ