Gain and coherence collapse condition for a laser diode with optoelectronic feedback using Volterra series

Gain and coherence collapse condition for a laser diode with optoelectronic feedback using Volterra series

Four-tone small signal analysis was performed for a nonlinear optoelectronic feedback laser diode system. In the analysis, Volterra power series up to second-order opening, the second kernel for the output intermodulation distortion (IMD) analysis was performed. The components of the alternative IMD frequency were selected for analysis. These are the four IMD frequency components. The variation of IMD frequency component amplitudes was investigated under various values of delay-time (t0) and the feedback gain constant (K). The feedback values and the critical frequencies, at which the coherence collapse or chaos occur, were also determined.

___

  • [1] Chuang SL, Ogorman J, Levi, AFJ. Amplified spontaneous emission and carrier pinning in laser-diodes. IEEE J Quantum Electronics 1993; 29:1631-1639.
  • [2] Celebi FV. A different approach to gain computation in laser diodes with respect to different number of quantumwells. Optik 2005; 116: 375-378.
  • [3] Geels RS, Corzine SW, Coldren LA. Ingaas vertical-cavity surface-emitting lasers. IEEE J Quantum Electronics 1991; 27:1359-1367.
  • [4] Wenzel H, Erbert G, Enders PM. Improved theory of the refractive-index change in quantum-well lasers. IEEE J Selected Topics in Quantum Electronics 1999; 5:637-642.
  • [5] Celebi FV, Danisman K. A different approach for the computation of refractive index change in quantum-well diode lasers for different injection levels. Proceedings of SPIE 2004; 5662:384-388. Fifth International Symposium on Laser Precision Microfabrication; Nara; Japan.
  • [6] Stohs J, Bossert DJ, Gallant DJ. Gain, refractive index change, and linewidth enhancement factor in broad-area GaAs and InGaAs quantum-well lasers. IEEE J Quantum Electronics 2001; 37:1449-1459.
  • [7] Henry CH. Theory of the linewidth of semiconductor-lasers. IEEE J Quantum Electronics 1982; 18: 259-264.
  • [8] Celebi FV, Danisman K. Neural estimator to determine alpha parameter in terms of quantum-well number. Optics & Laser Technol 2005; 37:281-285.
  • [9] Heil T, Fischer I, Elsasser W. Influence of amplitude-phase coupling on the dynamics of semiconductor lasers subject to optical feedback. Physical Review 1999; 60: 634-641.
  • [10] Uchida T, Miyamoto T, Koyama F. Effect of index variation in active layer on transverse mode for vertical-cavity surface-emitting lasers. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006; 45: 2550-2555.
  • [11] Yildirim R, Celebi FV. The computation of the angle between the gain and photon population by geometrical approach. J Faculty of Eng Architec of Gazi University 2009; 24: 709-714.
  • [12] Chuang SL. Optical gain of strained wurtzite GaN quantum-well lasers. IEEE J Quantum Electronics 1996; 32:1791- 1800.
  • [13] Fang W, Chuang SL. Theoretical prediction of gan lasing and temperature sensitivity. Applied Physics Letters 1995; 67: 751-753.
  • [14] Gerhardt NC, Hofmann MR, Hader J. Linewidth enhancement factor and optical gain in (GaIn)(NAs)/GaAs lasers. Applied Physics Letters 2004; 84: 1-3.
  • [15] Wieczorek S, Krauskopf B, Simpson TB. The dynamical complexity of optically injected semiconductor lasers. Physics Reports-Review Section of Physics Letters 2005; 416: 1-128.
  • [16] Newell TC, Bossert DJ, Stintz A. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photonics Technology Letters 1999; 11: 1527-1529.
  • [17] Yu Y, Giuliani G, Donati S. Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical, feedback self-mixing effect. IEEE Photonics Technology Letters 2004; 16: 990-992.
  • [18] Su CB, Eom J, Lange CH. Characterization of the dynamics of semiconductor-lasers using optical modulation. IEEE J Quantum Electronics 1992; 28: 118-127.
  • [19] Xin YC, Li Y, Martinez A. Optical gain and absorption of quantum dots measured using an alternative segmented contact method. IEEE J Quantum Electronics 2006; 42: 725-732.
  • [20] Walmsley M, Abram RA. Carrier dynamics model of fast refractive index changes in semiconductor laser amplifiers. IEE Proceedings-Optoelectronics 1997; 144: 189-196.
  • [21] Yucel M, Aslan Z. The noise figure and gain improvement of double-pass C-band EDFA. Microwave and Optical Technol Lett 2013; 55: 2525-2528.
  • [22] Yucel M, Goktas HH, Ozkaraca O. Temperature dependence of noise figure in the erbium doped fiber amplifier. J Fac Eng Archit Gazi Univ 2010; 25: 635-641.
  • [23] Yucel M, Goktas HH. Determination of minimum temperature coefficient of C band EDFA. J Applied Sciences 2008; 8: 4464-4467.
  • [24] Yucel M, Gokta¸s HH. Design of gain flattenned ultra-wideband hybrid optical amplifier. J Fac Eng Archit Gazi Univ 2007; 22: 863-868.
  • [25] Ababneh JI, Qasaimeh O. Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks. IEEE Transactions on Electron Devices 2006; 53: 1543-1550.
  • [26] Wei Lu, Xi J, Yu Y. Linewidth enhancement factor measurement based on optical feedback self-mixing effect: a genetic algorithm approach. J Optics A-Pure And Applied Optics 2009; 11.
  • [27] Yucel M. Celebi FV, Goktas HH. Simple and efficient ANN model proposed for the temperature dependence of EDFA gain based on experimental results. Optics And Laser Technology 2013; 45: 488-494.
  • [28] Roy K. Naskar MK. Genetic evolutionary algorithm for static traffic grooming to SONET over WDM optical networks. Computer Comm 2007; 30: 3392-3402.
  • [29] Celebi FV, Yucel M, Goktas HH, Danisman K. Intelligent modelling of alpha (α) parameter; comparison of ANN and ANFIS cases. Optoelectronics and Advanced Materials, Rapid Communications 2013; 7: 470-474.
  • [30] Yigit S, Tugrul B, Celebi FV. A complete CAD model for type-I quantum cascade lasers with the use of artificial bee colony algorithm. Journal of Artificial Intelligence 2012; 5: 76-84.
  • [31] Celebi FV, Yucel M, Goktas HH. Fuzzy logic based device to implement a single CAD model for a laser diode based on characteristic quantities. Optik 2012; 123: 471-474.
  • [32] Yigit S, Eryigit R, Celebi FV. Optical gain model proposed with the use of artificial neural networks optimised by artificial bee colony algorithm. Optoelectronics and Advanced Materials, Rapid Communications 2011; 5: 1026-1029.
  • [33] Yucel, M, Goktas, HH, Celebi, FV. Temperature independent length optimization of L-band EDFAs providing flat gain. Optik 2011; 122: 872-876.
  • [34] Tankiz, S, Celebi FV, Yildirim R. Computer-aided design model for a quantum-cascade laser. IET Circuits, Devices and Systems 2011; 5: 143-147.
  • [35] Celebi FV, Altindag T. An accurate optical gain model using adaptive neurofuzzy inference system. Optoelectronics and Advanced Materials, Rapid Communications 2009; 3: 975-977.
  • [36] Celebi FV, Dalkiran I, Danisman K. Injection level dependence of the gain, refractive index variation, and alpha (α) parameter in broad-area InGaAs deep quantum-well lasers. Optik 2006; 117: 511-515.
  • [37] Celebi FV. Modeling of the linewidth enhancement factors of the narrow and wide GaAs well semiconductor lasers. J Faculty of Eng Architec of Gazi University 2006; 21: 161-166.
  • [38] Celebi FV. A proposed CAD model based on amplified spontaneous emission spectroscopy. J Optoelectronics and Advanced Materials 2005; 7: 1573-1579.
  • [39] Sagiroglu S, Danisman K. Modelling of the linewidth enhancement factor with the use of radial basis function network. AEU-Archiv fur Elektronik und Ubertragungstechnik 2002; 56: 51-54.
  • [40] Goktas HH, Yucel M. A fuzzy logic based device for the determination of temperature dependence of EDFAs. Microwave and Optical Technol Lett 2008; 50: 2331-2334.
  • [41] Yucel M. Fuzzy logic-based automatic gain controller for EDFA. Microwave and Optical Technology Letters 2011; 53: 2703-2705.
  • [42] Celebi N. A complete type II quantum cascade laser model with the use of RBFN. Optoelectronics and Advanced Materials, Rapid Communications 2013; 7: 188-190.
  • [43] Lau KY. RF transport over optical fiber in urban wireless infrastructures. J Opt Commun Netw 2012; 4: 326-335.
  • [44] Schetzen M, Yildirim R. System theory of the single-mode laser-diode. Opt Commun 2003; 219: 341-350.
  • [45] Schetzen M, Yildirim R. Application of the single–mode laser diode system theory. Opt Commun 2003; 219: 351-355.
  • [46] Aydin E, Yildirim R. Optimizing the performance of single-mode laser diode system using genetic algorithm. Opt Laser Eng 2004; 42: 41-46.
  • [47] Yıldırım R. Intermodulation distortion system theory of the three-tone small signal input laser diode with non-linear optoelectronic feedback. J Fac Eng Arch Gazi Univ 2007; 22: 417-430.
  • [48] Schetzen M, Yildirim R, C¸ elebi F. Intermodulation distortion of the single-mode laser-diode. Appl Phys B 2008; 93: 837–847.
  • [49] Yıldırım R. Selection of frequency components for symmetric and asymmetric communication systems. J Fac Eng Arch Gazi Univ 2008, 23: 329-341.
  • [50] Celebi FV, Yildirim R, Gergerli B, Gokrem L. Alternative intermodulation frequency components. International Conf on App of Information and CommTechnol, AICT 2009; Baku; Azerbaijan.
  • [51] Celebi FV, Yildirim R. Distortion system theory of the two tone small signal input laser diode. J Faculty of Eng Architec of Gazi University 2005; 20: 373-377.
  • [52] Yıldırım R, C¸ elebi FV. Harmonic amplitude control in laser diodes with non-linear feedback. J Fac Eng Arch Gazi Univ 2010; 25: 163-170.
  • [53] Alifaha S, Idrusa SM, Kassima NM, Shenga NY, Rahmata MF, Greenc RJ. Intermodulation distortion analysis of feedforward linearised laser transmitter employing volterra series approach. Optik 2012; 124: 631-634.
  • [54] Li N, Pan W, Luo B, Yan L, Zou X, Jiang N, Xiang S. High bit rate fiber-optic transmission using a four-chaoticsemiconductor-laser scheme. IEEE Photonic Tech L 2012; 24: 1072-1074.
  • [55] Pal V, Suelezer J, Prasa A, Vemuri G, Ghosh R. Semiconductor laser dynamics with two filtered optical feedbacks. In: International Conference on Fiber Optics and Photonics; 9–12 December 2012; Chennai, India. Washington, DC, USA: OSA Lasers & Ultrafast Optics III (W3C).
  • [56] Kingni ST, Van der Sande G, Gelens L, Erneux T, Danckaert J. Direct modulation of semiconductor ring lasers: numerical and asymptotic analysis. J Opt Soc Am B 2012; 29: 1983-1992.
  • [57] Li N, Pan W, Yan L, Luo B, Xu M, Tang Y, Jiang N, Xiang S, Zhang Q. Chaotic optical cryptographic communication using a three-semiconductor-laser scheme. J Opt Soc Am B 2012; 29: 101-108.
  • [58] Donati S, Fathi MT. Transition from short-to-long cavity and from self-mixing to chaos in a delayed optic a feedback laser. IEEE J Quantum Elect 2012; 48: 1352-1359.
  • [59] Priyadarshi S, Pierce I, Hong Y, Shore KA. Optimal operating conditions for external cavity semiconductor laser optical chaos communication system. Semicond Sci Technol 2012; 27: 094002, doi:10.1088/0268-1242/27/9/094002.
  • [60] Osborne S, Heinricht P, Brandonisio N, Amann A, O’Brie S. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback. Semicond Sci Technol 2012; 27: 094001, doi:10.1088/0268- 1242/27/9/094001.
  • 61] Mahmouda SWZ, Ahmed M, Hassan AMA. Comprehensive large-signal analyses of RF modulation of vertical cavity surface emitting lasers. Opt Laser Technol 2013; 45: 406-413.
  • [62] Kechaou K, Grillot F, Provost JG, Thedrez B, Erasme D. Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization. Opt Express 2012; 26062-26074.
  • [63] Shahverdiev EM, Shore KA. Multiplex chaos synchronization in semiconductor lasers with multiple optoelectronic feedbacks. 2011 Chaotic Dynamics (nlin.CD); Adaptation and Self-Organizing Systems (nlin.AO) 2011; arXiv:0906.4303v2 [nlin.CD].
  • [64] Li N, Pan W, Luo B, Yan L, Zou X, Xu M, Jiang N. Numerical characterization of time delay signature in chaotic vertical-cavity surface-emitting lasers with optical feedback. Opt Commun 2012; 285: 3837-3848.
  • [65] Virte M, Panajotov K, Thienpont H, Sciamanna M. Deterministic polarization chaos from a laser diode. Nat Photonics 2013; 7: 60-65.
  • [66] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garc´ıa-Ojalvo J, Mirasso CR, Pesquera L, Shore KA. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005; 438: 343-346.
  • [67] McKinney JD, Leaird DE, Hastings AS, Weiner AM, Williams KJ. Optical comb sources and high-resolution optical filtering for measurement of photodiode harmonic distortion. J Lightwave Technol 2010; 28: 1228-1235.
  • [68] Lee SH, Kim MW, Rim S, Kim CM, Kim JH, Oh KR. Experimental measurement of gain and loss in a microcavity laser. Phys Rev A 2012; 85: 023839; doi:10.1103/PhysRevA.85.023839.
  • [69] Sciamanna1 M, Virte M, Masoller C, Gavrielides A. Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers. Phys Rev E 2012; 86: 016218; doi:10.1103/PhysRevE.86.016218.
  • [70] Romeira B, Javaloyes J, Figueiredo JML, Ironside CN, Cant´u HI, Kelly AE. Delayed feedback dynamics of Li´enardtype resonant tunneling-photo-detector optoelectronic oscillators. IEEE J Quantum Elect 2013; 49: 31-42.
  • [71] Lin YS. Theory of stability and bifurcation in a multi-quantum well laser with opto-electronic delayed feedback. Opt Laser Technol 2012; 44: 83-91.
  • [72] Khursana AHA, Ghalibb BA, Al-Obaidic SJ. Numerical simulation of optical feedback on a quantum dot lasers. Semiconductors 2012; 46: 213-220.
  • [73] Ling J, Ma J, Zhuang S. Experimental research on profile measurement based on laser optical feedback. Optik 2012; (in press), doi: 10.1016/j.ijleo.2012.05.018.
  • [74] Hassine L, Toffano Z, Lamnabhi-Lagarrigue F, Destrez A, Birocheau C. Volterra functional series expansions for semiconductor lasers under modulation. IEEE J Quantum Elect 1994; 30: 918-928.
  • [75] Tucker RS. High-speed modulation of semiconductor lasers. J Lightwave Technol 1985; 3: 1180-1192.
  • [76] Olshansky R, Hill P, Lanzisa V, Powazinik W. Universal relationship between resonant frequency and damping rate of 1.3 µm InGaAsP semiconductor laser. Appl Phys Lett 1987; 50: 653-655.