Effect of orientation of RF sources maintained within the enclosures on electrical shielding effectiveness performance

Effect of orientation of RF sources maintained within the enclosures on electrical shielding effectiveness performance

The effect of single aperture metallic enclosures on electrical shielding effectiveness (ESE) has been investigated. Simulations and measurements have been obtained for comparison. The effects of orientation of transmittingantenna (source orientation) with respect to aperture length have been studied at 2.60–9 GHz as a novelty, and thisgives details of IC RF source orientation in an enclosure. In the case of square apertures on an enclosure, a higher ESEvalue is obtained with respect to a rectangular aperture. As a case study, when the aperture width of the enclosure isdecreased from 75 to 18.75 mm, the frequency bandwidth of ESE with vertical orientation becomes higher. In otherwords, while the area of the aperture is fixed, decreasing aperture width increases ESE for vertical orientation. In thenext case, ESE with vertical orientation is better at 34.37%, 71.87%, and 99.98% of the full frequency range than thehorizontal one while the ratio of aperture length/width is 1, 4, and 16, respectively. It has been found that the verticalorientation of sources with respect to aperture-length orientation is predominant for the horizontal orientation of it onESE performance.

___

  • [1] Araz I. The measurement of shielding effectiveness for small-in-size ferrite-based flat materials. Turkish Journal of Electrical Engineering & Computer Sciences 2018; 26: 2996-3006. doi:10.3906/elk-1803-162
  • [2] Arellano Y, Hunt A, Haas OC. Evaluation of near-field electromagnetic shielding effectiveness at low frequencies. IEEE Sensors Journal 2019; 19 (1): 121-128. doi:10.1109/JSEN.2018.2873909
  • [3] Shourvarzi A, Joodaki M. Using a network of ports for shielding effectiveness optimization of an enclosure with arbitrary shape apertures. International Journal of Numerical Modelling 2018; 31 (6): 1-13. doi:10.1002/jnm.2334
  • [4] Nie BL, Du PA, Xiao P. An improved circuital method for the prediction of shielding effectiveness of an enclosure with apertures excited by a plane wave. IEEE Transactions on Electromagnetic Compatibility 2018; 60 (5): 1376- 1383. doi:10.1109/TEMC.2017.2761399
  • [5] Hu PY, Sun XY. An efficient method to study shielding effectiveness of rectangular enclosure with wire penetration. ACES Journal 2018; 33 (9): 957-965.
  • [6] Zhou C, Gui L, Liu D, Lv L, Lu D et al. Simulation and measurement for shielding effectiveness of small size metal enclosure. IET Science, Measurement & Technology 2017; 11 (1): 25-29. doi:10.1049/iet-smt.2016.0115
  • [7] Kuo CW, Kuo CM. Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel subgridding algorithm. IEEE Transactions on Electromagnetic Compatibility 2016; 58 (5): 1595-1601. doi:10.1109/TEMC.2016.2572210
  • [8] Hu PY, Sun X. Study of the calculation method of shielding effectiveness of rectangle enclosure with an electrically large aperture. Progress In Electromagnetic Research M 2017; 61: 85-96. doi:10.2528/PIERM17081104
  • [9] Yin MC, Du PA. An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures. IEEE Transactions on Electromagnetic Compatibility 2016; 58 (2): 448-456. doi:10.1109/TEMC.2016.2517163
  • [10] Nie BL, Liu QS, Du PA. An improved thickness correction method of analytical formulations for shielding effectiveness prediction. IEEE Transactions on Electromagnetic Compatibility 2016; 58 (3): 907-910. doi:10.1109/TEMC.2016.2533661
  • [11] Nie BL, Du PA. An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture. IEEE Transactions on Electromagnetic Compatibility 2015; 57 (3): 357-364. doi:10.1109/TEMC.2014.2383438
  • [12] Rabat A, Bonnet P, Drissi KEK, Girard S. Analytical formulation for shielding effectiveness of a lossy enclosure containing apertures. IEEE Transactions on Electromagnetic Compatibility 2018; 60 (5): 1384-1392. doi:10.1109/TEMC.2017.2764327
  • [13] Shourvarzi A, Joodaki M. Using aperture impedance for shielding effectiveness estimation of a metallic enclosure with multiple apertures on different walls considering higher order modes. IEEE Transactions on Electromagnetic Compatibility 2018: 60 (5): 629-637. doi:10.1109/TEMC.2017.2764327
  • [14] Shourvarzi A, Joodaki M. Shielding effectiveness estimation of a metallic enclosure with an aperture using Sparameter analysis: analytic validation and experiment. IEEE Transactions on Electromagnetic Compatibility 2017; 59 (2): 537-540. doi:10.1109/TEMC.2016.2615525
  • [15] Ren D, Du PA, He Y, Chen K, Luo JW et al. A fast calculation approach for the shielding effectiveness of an enclosure with numerous small apertures. IEEE Transactions on Electromagnetic Compatibility 2016; 58 (4): 1033- 1041. doi: 10.1109/TEMC.2016.2547739
  • [16] Basyigit IB, Caglar MF. Investigation of the magnetic shielding parameters of rectangular enclosures with apertures at 0 to 3 GHz. Electromagnetics 2016; 36 (7): 434-446. doi:10.1080/02726343.2016.1220907
  • [17] Celozzi S, Araneo R. Alternative definitions for the time-domain shielding effectiveness of enclosures. IEEE Transactions on Electromagnetic Compatibility 2014; 56 (2): 482-485. doi:10.1109/TEMC.2013.2282713
  • [18] Heidari G. Wimedia UWB: Technology of Choice for Wireless USB and Bluetooth. New York, NY, USA: John Wiley & Sons, 2008.
  • [19] Cusmai G, Brandolini M, Rossi P, Svelto F. A 0.18-µm CMOS selective receiver front-end for UWB applications. IEEE Journal of Solid-State Circuits 2006; 41 (8): 1764-1771. doi:10.1109/JSSC.2006.877256
  • [20] Han J, Nguyen C. Investigation of time-domain response of microstrip quasi-horn antennas for UWB applications. Electronics Letters 2007; 43 (1): 9-10. doi:10.1049/el:20073507
  • [21] Verbiest JR, Vandenbosch GAE. Low-cost small-size tapered slot antenna for lower band UWB applications. Electronics Letters 2006; 42 (12): 670-671. doi:10.1049/el:20061333
  • [22] Reddy JSK. Gi-Fi Technology. International Journal of Advanced Scientific and Technical Research 2013; 3 (1): 75-87.
  • [23] IEEE. Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, IEEE Std 299- 2006-R2012. New York, NY, USA: IEEE, 2012.
  • [24] Balanis CA. Advanced Engineering Electromagnetics. 2nd ed. New York, NY, USA: John Wiley & Sons, 2012.