A quasi-Z-source active neutral point clamped inverter topology employing symmetrical/unsymmetrical boost modulation control scheme for renewable energy resources

A quasi-Z-source active neutral point clamped inverter topology employing symmetrical/unsymmetrical boost modulation control scheme for renewable energy resources

This paper proposes a bipolar quasi-Z-source active neutral point clamped inverter (QZS-ANPCI) topology.It acts as a buck/boost inverter (3-phase, 3-level) to integrate renewable energy resources under their fluctuatingDC voltages. We propose a symmetrical/unsymmetrical boost modulation control technique to mitigate the DC-linkunbalance voltage problem in an ANPC inverter. This worthwhile control technique exploits voltage-current closedloops on AC and DC sides to regulate the desired parameters. Moreover, the constant boost control (CBC) modulationhas provided a switching sequence that generates a symmetrical/unsymmetrical full shoot-through (FST) state forboosting input DC voltage in the proposed inverter. Detailed loss and efficiency analysis is carried out to show itssuperior performance under the proposed scheme. Furthermore, the total harmonic distortion (THD) of the proposedQZS-ANPCI meets IEEE Standard-519. Simulink/MATLAB (MathWorks, USA) and PSIM (Powersim, USA) softwareprograms are used to simulate the proposed topology. To verify the theoretical proposals and simulation results, we havedeveloped an experimental prototype setup (1 kW). Both simulation results and experimental data show satisfactoryagreement and support the theoretical postulates.

___

  • [1] de Matos JG, e Silva FS, Ribeiro LA. Power control in ac isolated microgrids with renewable energy sources and energy storage systems. IEEE Transactions on Industrial Electronics 2015; 62 (6): 3490-8. doi: 10.1109/TIE.2014.2367463
  • [2] Peng FZ. Z-source inverter. IEEE Transactions on Industry Applications 2003; 39 (2): 504-10. doi: 10.1109/TIA.2003.808920
  • [3] Gao F, Loh PC, Blaabjerg F, Gajanayake CJ. Operational analysis and comparative evaluation of embedded Zsource inverters. In: IEEE 2008 Power Electronics Specialists Conference; Rhodes, Greece; 2008. pp. 2757-2763. doi: 10.1109/PESC.2008.4592362
  • [4] Anderson J, Peng FZ. Four quasi-Z-source inverters. In: IEEE 2008 Power Electronics Specialists Conference; Rhodes, Greece; 2008. pp. 2743-2749. doi: 10.1109/PESC.2008.4592360
  • [5] Ellabban O, Van Mierlo J, Lataire P. Comparison between different pulse-width-modulation control methods for different Z-source inverter topologies. In: IEEE 2009 13th European Conference on Power Electronics and Applications; Barcelona, Spain; 2009. pp. 1-11.
  • [6] Siwakoti YP, Peng FZ, Blaabjerg F, Loh PC, Town GE et al. Impedance-source networks for electric power conversion part II: review of control and modulation techniques. IEEE Transactions on Power Electronics 2015; 30 (4): 1887-1906. doi: 10.1109/TPEL.2014.2329859
  • [7] Choudhury A, Pillay P, Williamson SS. A performance comparison study of space-vector and carrier-based pulsewidth-modulation techniques for a 3-level neutral-point-clamped traction inverter drive. In: IEEE 2014 Power Electronics, Drives and Energy Systems Conference; Mumbai, India; 2014. pp. 1-6. doi: 10.1109/PEDES.2014.7041964
  • [8] Schweizer M, Lizama I, Friedli T, Kolar JW. Comparison of the chip area usage of 2-level and 3-level voltage source converter topologies. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society; Glendale, AZ, USA; 2010. pp. 391-396. doi: 10.1109/IECON.2010.5674994
  • [9] Loh PC, Gao F, Blaabjerg F, Feng SY, Soon KN. Pulsewidth-modulated Z-source neutral-point-clamped inverter. IEEE Transactions on Industry Applications 2007; 43 (5): 1295-308. doi: 10.1109/TIA.2007.904422
  • [10] Loh PC, Lim SW, Gao F, Blaabjerg F. Three-level Z-source inverters using a single LC-impedance network. IEEE Transactions on Power Electronics 2007; 22 (2): 706-711. doi: 10.1109/TPEL.2007.892433
  • [11] Loh PC, Gao F, Blaabjerg F, Lim SW. Operational analysis and modulation control of three-level Z-source inverters with enhanced output waveform quality. IEEE Transactions on Power Electronics 2009; 24 (7): 1767-1775. doi: 10.1109/TPEL.2009.2014651
  • [12] Husev O, Roncero-Clemente C, Romero-Cadaval E, Vinnikov D, Stepenko S. Single phase three-level neutral-pointclamped quasi-Z-source inverter. IET Power Electronics 2014; 8 (1): 1. doi: 10.1049/iet-pel.2013.0904
  • [13] Shults T, Husev O, Blaabjerg F, Roncero C, Romero-Cadaval E et al. Novel space vector pulse width modulation strategies for single-phase three-level neutral-point-clamped impedance-source inverters. IEEE Transactions on Power Electronics 2019; 34 (5): 4820-4830. doi: 10.1109/TPEL.2018.2859194
  • [14] Mo W, Loh PC, Blaabjerg F, Wang P. Trans-Z-source and Γ-Z-source neutral-point-clamped inverters. IET Power Electronics 2014; 8 (3): 371-377. doi:10.1049/iet-pel.2014.0725
  • [15] Yu D, Cheng Q, Gao J, Tan F, Zhang Y. Three-level neutral-point-clamped quasi-Z-source inverter with reduced Z-source capacitor voltage. Electronics Letters 2016; 53 (3): 185-187. doi: 10.1049/el.2016.3930
  • [16] Sahoo M, Keerthipati S. A three-level LC-switching-based voltage boost neutral-point-clamped inverter. IEEE Transactions on Industrial Electronics 2017; 64 (4): 2876-2883. doi: 10.1109/TIE.2016.2636120
  • [17] Chen HC, Liao JY. Modified interleaved current sensorless control for three-level boost power factor correction converter with considering voltage imbalance and zero-crossing current distortion. IEEE Transactions on Industrial Electronics 2015; 62 (11): 6896–6904. doi: 10.1109/TIE.2015.2435695
  • [18] Mahdavikhah B, Prodic A. Low-volume power factor correction rectifier based on nonsymmetric multilevel boost converter. IEEE Transactions on Power Electronics 2015; 30 (3): 1356–1372. doi: 10.1109/TPEL.2014.2317723
  • [19] Krishna R, Soman DE, Kottayil SK, Leijon M. Pulse delay control for capacitor voltage balancing in a three-level boost neutral point clamped inverter. IET Power Electron 2015; 8 (2): 268–277. doi: 10.1049/iet-pel.2014.0103
  • [20] Ho AV, Chun TW. Single-phase modified quasi-Z-source cascaded hybrid five-level inverter. IEEE Transactions on Industrial Electronics 2018; 65 (6): 5125-5134. doi: 10.1109/TIE.2017.2779419
  • [21] Lee SS, Lee KB. Dual-T-type seven-level boost active-neutral-point-clamped inverter. IEEE Transactions on Power Electronics 2019; 34: 6031-6035. doi: 10.1109/TPEL.2019.2891248
  • [22] Ye Z, Wang T, Mao S, Chen A, Yu D et al. A PWM strategy based on state transition for cascaded H-bridge inverter under unbalanced DC sources. IEEE Journal of Emerging and Selected Topics in Power Electronics (in press). doi: 10.1109/JESTPE.2019.2893936
  • [23] Xing X, Zhang C, Chen A, He J, Wang W et al. Space-vector-modulated method for boosting and neutral voltage balancing in Z-source three-level T-type inverter. IEEE Transactions on Industry Applications 2016; 52 (2): 1621- 1631. doi: 10.1109/TIA.2015.2490142
  • [24] Park Y, Sul SK, Lim CH, Kim WC, Lee SH. Asymmetric control of DC-link voltages for separate maximum power point trackers in three-level inverters. IEEE Transactions on Power Electronics 2013; 28 (6): 2760-2769. doi: 10.1109/TPEL.2012.2224139
  • [25] Floricau D, Popescu CL, Popescu MO, Floricau E, Spataru L. A comparison of efficiency for three-level neutralpoint-clamped and active-neutral-point-clamped voltage source converters. In: IEEE 2009 Compatibility and Power Electronics Conference; Badajoz, Spain; 2009. pp. 331-336. doi: 10.1109/CPE.2009.5156055
  • [26] Rodriguez J, Bernet S, Steimer PK, Lizama IE. A survey on neutral-point-clamped inverters. IEEE Transactions on Industrial Electronics 2010; 57 (7): 2219-2230. doi: 10.1109/TIE.2009.2032430
  • [27] Shinde U, Kottagattu S, Kadwane S, Gawande S. Grid-connected quasi-Z-source inverter with battery. Turkish Journal of Electrical Engineering & Computer Sciences 2018; 26 (4): 1847-1859. doi: 10.3906/elk-1703-123
  • [28] Liu Y, Ge B, Ferreira FJ, de Almeida AT, Abu-Rub H. Modeling and space-vector pulse-width-modulation control of quasi-Z-source inverter. In: IEEE 2011 11th International Conference on Electrical Power Quality and Utilisation; Lisbon, Portugal; 2011. pp. 1-7. doi: 10.1109/EPQU.2011.6128914
  • [29] Babaei E, Alilu S, Laali S. A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Transactions on Industrial Electronics 2014; 61 (8): 3932-3939. doi: 10.1109/TIE.2013.2286561
  • [30] Pan L. LZ-source inverter. IEEE Transactions on Power Electronics 2014; 29 (12): 6534-6543. doi: 10.1109/TPEL.2014.2303978
  • [31] Barater D, Concari C, Buticchi G, Gurpinar E, De D et al. Performance evaluation of a three-level active-neutralpoint-clamped photo-voltaic grid-connected inverter with 650-V SiC devices and optimized pulse-width-modulation. IEEE Transactions on Industry Applications 2016; 52 (3): 2475-2485. doi: 10.1109/TIA.2016.2514344
  • [32] Guan QX, Li C, Zhang Y, Wang S, Xu DD et al. An extremely high efficient three-level active neutral-pointclamped converter comprising SiC and Si hybrid power stages. IEEE Transactions on Power Electronics 2018; 33 (10): 8341-8352. doi: 10.1109/TPEL.2017.2784821
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK