Diffusive representation modelling thermal and overvoltage for permanent magnet synchronous motor fed by voltage inverter

Diffusive representation modelling thermal and overvoltage for permanent magnet synchronous motor fed by voltage inverter

Life of electric machines is very sensitive to temperature increases especially due to the fragility of theirwindings as well as to the overvoltage at the motor’s terminals. Therefore, it is necessary to find the temperature in themost sensitive areas of the machine. It has been known for a long time that temperature rise is caused by the losses inthe machine; thus, various models have been proposed. It has also been shown that the permanent magnet synchronousmotor fed by a voltage inverter overheats more than the one supplied by a sinusoidal voltage. Indeed the permanentmagnet synchronous motor fed by a voltage inverter deserves special attention. In this paper a new technique based ondiffusive representation is used to develop two coupled mathematical models; one for thermal variation in some of themost delicate places of winding and another one for the overvoltage at the motor’s terminals. The obtained simulationsand experimental results show clearly the validity and the high performance of the proposed models.

___

  • [1] Khaled B S, Bidan P, Lebey T, Ammar F B, Elleuch M. Identification and time domain simulation of the association inverter-cable-asynchronous machine using diffusive representation. IEEE Trans Power Electron 2009; 56: 257-256.
  • [2] CEI/TS 6003-17. Cage induction motors when fed from converters- Application guide, partie-17, 2006.
  • [3] Cassat A, Wavre CEN. BLDC motor stator and rotor iron losses and thermal behavior based on lumped schemes. IEEE Trans Ind Appl 2003; 39: 1341-1322.
  • [4] Zhang P, Du Y, Lu B, Habetler TG. ADC Signal injection-based thermal protection scheme for soft-stater-connected induction motors. IEEE Trans Ind Appl 2009; 5: 1351-1358.
  • [5] Kral C, Habetler T G, Harley RG, Pirker F, Pascoli G, Oberguggenberger H, Fenz CJM. Rotor temperature estimation of squirrel-cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model. IEEE Trans Ind Appl 2004; 40: 1049-1057.
  • [6] Mendes AMS, Lopez Fernanadez XM, Marques Cardoso AJ. Thermal performance of a three-phase induction motor under fault tolerant operating strategies. IEEE Trans Power Electron 2008; 23: 1537-1544.
  • [7] De Abreu P G J, Emanuel A E. Induction motor thermal aging caused by voltage distortion and imbalance: loss of useful life an dits estimated cost. IEEE Trans Ind Appl 2003; 38: 12-28.
  • [8] Boglietti A, Cavagnino A, Lazzari M, Pastorelli M. A simplified thermal model for variable speed self-cooled industrial induction motor. IEEE Trans Ind Appl 2003; 39: 945-952.
  • [9] Boglietti A, Cavagnino A. Analysis of the endwinding cooling effects in TEFEC induction motors. IEEE Trans Ind Appl 2007; 43: 1214-1222.
  • [10] Boglietti A, Cavagnino A, Staton DA, Popescu M, Cossar C, Mc Gilp MI. End space heat transfer coefficient determination for different induction motor enclosure types. IEEE Trans Ind Appl 2009; 45: 929-937.
  • [11] Lee Y, Hahn S Y, Ken Kauh S. Thermal analysis of induction motor with forced cooling channels. IEEE Trans Mag 2009; 36: 1398-1402.
  • [12] Bianchi N, Bolognani S, Tonel F. Thermal analysis of a run-capacitor single-phase induction motor. IEEE Trans Ind Appl 2003; 39: 457-465.
  • [13] Staton D A, Cavagnino A. Convection heat transfer and flow calculations suitable for electric machines thermal models. IEEE Trans Ind Electron 2008; 55: 3509-3516.
  • [14] Boglietti A, Cavagnino A, Parvis M, Vallan A. Evaluation of radiation thermal resistances in industrial motors. IEEE Trans Ind Appl 2006; 42: 688-692.
  • [15] Gao Z, Colby R S, Habetlerand T G, Harley R G. A model reduction perspective on thermal models for induction machine overload relays. IEEE Trans Ind Electron 2008; 55: 3525-3534.
  • [16] Alberti L, Bianchi N. A coupled thermal electromagnetic analysis for a rapid and accurate prediction of IM performance. IEEE Trans. Ind. Electron. 2008; 55: 3575-3582.
  • [17] Marignetti F, DelliColli V, Coia Y. Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis. IEEE Trans Ind Electron 2008; 55: 3591-3601.
  • [18] Tenconi A, Profumo F, Bauer SE, Hennen MD. Temperatures evaluation in an integrated motor drive for traction applications. IEEE Trans. Ind. Electron. 2008; 55: 3619-3626.
  • [19] Han J, Li W, Li Y. Analysis of three dimensional complex fluid flow and temperature distribution in the end region of a turbogenerator. IEEE Trans Ind Electron 2015; 62: 5370-5381.
  • [20] Jiang W, Jahns T M. Coupled electromagnetic-thermal analysis of Electric machines including transient operation based on finite-element technique. IEEE Trans Ind Appl 2015; 51: 1880-1889.
  • [21] Buyukdegirmenci VT, Krein PT. Induction machine characterization for short-term or momentary stall torque. IEEE Trans Ind Appl 2015; 51:2237-2245.
  • 22] Chen Q, Zou Z. Lumped-parameter thermal analysis and experimental validation of interior IPMSM for electrical vehicle. Journal of Electrical Engineering & Technology 2018; 13: 2276-2283.
  • [23] Zhu S, Cheng M, Cai X. Direct coupling method for coupled field-circuit thermal model of electrical machines. IEEE Trans Ener Conv 2017; 33: 473-482.
  • [24] Nerg J, Rilla M, Pyrhffnen J. Thermal analysis of radial-flux electrical machines with a high power density. IEEE Trans. Ind. Electron. 2008; 55: 3543-3554.
  • [25] Jungreuthmayer C, Bauml T, Winter O, Ganchev M, Kapeller H, Haumer A, Kral C. A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics. IEEE Trans Ind Electron 2012; 59: 4568-4578.
  • [26] EL-Refaie A M, Harris N C, Jahns T M, Rahman K. Thermal analysis of multibarrier interior PM synchronous machine using lumped parameter model. IEEE Trans Energy Convers 2004; 19: 303-309.
  • [27] Han PW, Choi JH, Kim D J, Chun JY, Bang DJ. Thermal analysis of high speed induction motor by using lumped-circuit parameters. Journal of Electrical Engineering & Technology 2015; 10: 2040-2045.
  • [28] Mellor PH, Roberts D, Turner DR. Lumped parameter thermal model for electrical machines of TEFC design. IEEE Proceedings-B 1991.
  • [29] Staton DA, Cavagnino A. Convection heat transfer and flow calculations suitable for electric machines thermal models. IEEE Trans Ind Electron 2008; 55: 3509-3516.
  • [30] Howey DA, Childs PRN. Air-gap convection in rotating electrical machines. IEEE Trans Ind Electron 2012; 59: 1367-1375.
  • [31] Marignetti F, Colli V D, Coia Y. Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis. IEEE Trans Ind Electron 2008; 55: 3591-3601.
  • [32] Marignetti F, Delli Colli V. Thermal analysis of an axial flux permanent-magnet synchronous machine. IEEE Trans Magn 2009; 45: 2970-2975.