Lightweight signature scheme to protect intellectual properties of Internet of things applications in system on chip field-programmable gate arrays

Lightweight signature scheme to protect intellectual properties of Internet of things applications in system on chip field-programmable gate arrays

Billions of smart objects in the edge devices offer advanced connectivity to networks which increase thesecurity and complexity of the Internet of things (IoT) applications. To make such entities smarter heterogeneousintellectual property (IP) cores from multiple service providers are reused in system on chip platform. Enabling bothchip and IP protection at post fabrication level is imperative. The IoT-based IP cores are signed with the hybridphysical unclonable function and finite state machine model to protect from cloning, misuse, unauthorized user access,and physical attacks. The extended finite-state machine is used to verify the signature, which reduces the space andtime complexity. The goal is to design a secure plug-and-play system which supports IoT IP core for the unique chipwithout using any complex algorithms and huge memory storage. Experimental results show that the average overheadvalues of area and power are 1.05% and 1.08% less, respectively, compared with the existing IP protection.

___

  • [1] Sjovall P, Virtanen J, Vanne J, Hamalainen TD. High-level synthesis design flow for HEVC intra encoder on SoCFPGA. In: IEEE 2015 Euromicro Conference on Digital System Design (DSD);Funchal, PORTUGAL; 2016. pp. 49-56.
  • [2] Synopsys. DesignWare IP for IoT SoC Designs. (White paper) East Middlefield Road Mountain View, CA, USA: Synopsys, 2016.
  • [3] Dhote S, Charjan P, Phansekar A, Hegde A, Joshi S et al. Using FPGA-SoC interface for low cost IoT based image processing. In: IEEE 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI); Jaipur, INDIA; 2016. pp. 1963-1968.
  • [4] Bol D, De Vos J, Botman F, de Streel G, Bernard S et al. Green SoCs for a sustainable Internet-of-things. In: IEEE 2013 Faible Tension Faible Consommation Conference (FTFC); Paris, FRANCE; 2013. pp. 1-4.
  • [5] Srinivasan N. CSoC Platform / Digital Subsystem IP for IOT. (White paper) Mindtree, India: Design & reuse, 2015
  • [6] Zhang J, Lin Y, Lyu Y, Qu G. A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing. IEEE Transactions on Information Forensics and Security 2015; 10 (6): 1137-1150. doi: 10.1109/TIFS.2015.2400413
  • [7] Lao Y, Yuan B, Kim CH, Parhi KK. Reliable PUF-based local authentication with self-correction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2017; 36 (2): 201-213. doi: 10.1109/TCAD.2016.2569581
  • [8] Zhang J, Qu G. Rebuttal to Comments on’A PUF-FSM binding scheme for FPGA IP protection and payper-device licensing. IEEE Transactions on Information Forensics and Security 2016; 11 (11): 2626-2627. doi: 10.1109/TIFS.2016.2553443
  • [9] Machida T, Yamamoto D, Iwamoto M, Sakiyama K. A new arbiter PUF for enhancing unpredictability on FPGA. The Scientific World Journal 2015. doi: 10.1155/2015/864812
  • [10] Kumar SS, Guajardo J, Maes R, Schrijen GJ, Tuyls P. The butterfly PUF protecting IP on every FPGA. In: IEEE 2008 IEEE International Workshop on Hardware-Oriented Security and Trust; Anaheim, CA, USA; 2008. pp. 67-70.
  • [11] Sengupta A. Intellectual property cores: Protection designs for CE products. IEEE Consumer Electronics Magazine 2015; 5 (1): 83-88. doi: 10.1109/MCE.2015.2484745
  • [12] Lao Y, Parhi KK. Obfuscating DSP circuits via high-level transformations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2015; 23 (5): 819-830. doi: 10.1109/TVLSI.2014.2323976
  • [13] Chang CH, Cui A. Synthesis-for-testability watermarking for field authentication of VLSI intellectual property. IEEE Transactions on Circuits and Systems I: Regular Papers 2010; 57 (7): 1618-1630. doi: 10.1109/TCSI.2009.2035415
  • [14] Cui A, Chang CH, Tahar S, Abdel-Hamid AT. A robust FSM watermarking scheme for IP protection of sequential circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2011; 30 (5): 678-690. doi: 10.1109/TCAD.2010.2098131
  • [15] Kufel J, Wilson PR, Hill S, Al-Hashimi BM, Whatmough PN. Sequence-aware watermark design for soft IP embedded processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2016; 24 (1): 276–289. doi: 10.1109/TVLSI.2015.2399457
  • [16] Cui A, Qu G, Zhang Y. Ultra-low overhead dynamic watermarking on scan design for hard IP protection. IEEE Transactions on Information Forensics and Security 2015; 10 (11): 2298–2313. doi: 10.1109/TIFS.2015.2455338
  • [17] Chang CH, Zhang L. A blind dynamic fingerprinting technique for sequential circuit intellectual property protection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2014; 33 (1): 76-89. doi: 10.1109/TCAD.2013.2282282
  • [18] Saha D, Sur-Kolay S. Embedding of signatures in reconfigurable scan architecture for authentication of intellectual properties in system-on-chip. IET Computers & Digital Techniques 2016; 10 (3): 110-118. doi: 10.1049/ietcdt.2015.0051
  • [19] Herder C, Yu MD, Koushanfar F, Devadas S. Physical unclonable functions and applications: A tutorial. PROCEEDINGS OF THE IEEE 2014; 102 (8): 1126-1141. doi: 10.1109/JPROC.2014.2320516
  • [20] Department of Information Technology. Guidelines for Usage of Digital Signatures in e-Governance. Ministry of Communications and Information Technology, New Delhi, Government of India, India: Rep. Government of India. Version 1.0 , 2010
  • [21] National Institute of Standards and Technology. Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program. Canadian Centre for Cyber Security, Government office in Ottawa, Canada: Rep.FIPS, 2019
  • [22] Locke G, Gallagher P. Digital signature standard (DSS). National Institute of Standards and Technology, Gaithersburg, MD, USA: Rep. FIPS PUB 186-3, 2013.
  • [23] Di Guglielmo G, Di Guglielmo L, Fummi F, Pravadelli G. Efficient generation of stimuli for functional verification by backjumping across extended FSMs. Journal of Electronic Testing. 2011; 27 (2): 137. doi: 10.1007/s10836-011- 5209-8
  • [24] Crockett LH, Elliot RA, Enderwitz MA, Stewart RW. The Zynq Book: Embedded Processing with the Arm CortexA9 on the Xilinx Zynq-7000 All Programmable Soc.University of Strathclyde Glasgow, Scotland, UK: Strathclyde Academic Media, 2014.
  • [25] Maiti A, Gunreddy V, Schaumont P. A systematic method to evaluate and compare the performance of physical unclonable functions. In: Athanas P, Pnevmatikatos D, Sklavos N (editors). Embedded Systems Design with FPGAs. New York, NY, USA: Springer, 2013. pp. 245-267.
  • [26] Bhargava M. Reliable, secure, efficient physical unclonable functions. PhD, Carnegie Mellon University Pittsburgh, Pittsburgh, PA, USA 2013.
  • [27] Cherkaoui A, Bossuet L, Marchand C. Design, evaluation, and optimization of physical unclonable functions based on transient effect ring oscillators. IEEE Transactions on Information Forensics and Security 2016; 11 (6): 1291-1305. doi: 10.1109/TIFS.2016.2524666
  • [28] Cao Y, Zhang L, Chang CH, Chen S. A low-power hybrid RO PUF with improved thermal stability for lightweight applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2015; 34 (7): 1143- 1147. doi: 10.1109/TCAD.2015.2424955